skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Low-temperature plasma-deposited silicon epitaxial films: Growth and properties

Journal Article · · Journal of Applied Physics
DOI:https://doi.org/10.1063/1.4892095· OSTI ID:22314544
; ; ; ; ;  [1]; ;  [2]
  1. École Polytechnique Fédérale de Lausanne (EPFL), Institute of Microengineering (IMT), Photovoltaics and Thin-Film Electronics Laboratory, Maladière 71B, CH-2000 Neuchâtel (Switzerland)
  2. École Polytechnique Fédérale de Lausanne (EPFL), Interdisciplinary Centre for Electron Microscopy (CIME), Station 12, CH-1015 Lausanne (Switzerland)

Low-temperature (≤200 °C) epitaxial growth yields precise thickness, doping, and thermal-budget control, which enables advanced-design semiconductor devices. In this paper, we use plasma-enhanced chemical vapor deposition to grow homo-epitaxial layers and study the different growth modes on crystalline silicon substrates. In particular, we determine the conditions leading to epitaxial growth in light of a model that depends only on the silane concentration in the plasma and the mean free path length of surface adatoms. For such growth, we show that the presence of a persistent defective interface layer between the crystalline silicon substrate and the epitaxial layer stems not only from the growth conditions but also from unintentional contamination of the reactor. Based on our findings, we determine the plasma conditions to grow high-quality bulk epitaxial films and propose a two-step growth process to obtain device-grade material.

OSTI ID:
22314544
Journal Information:
Journal of Applied Physics, Vol. 116, Issue 5; Other Information: (c) 2014 AIP Publishing LLC; Country of input: International Atomic Energy Agency (IAEA); ISSN 0021-8979
Country of Publication:
United States
Language:
English

Cited By (2)

High-efficiency crystalline silicon solar cells: status and perspectives journal January 2016
On-site SiH 4 generator using hydrogen plasma generated in slit-type narrow gap journal May 2018