skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Linear temperature behavior of thermopower and strong electron-electron scattering in thick F-doped SnO{sub 2} films

Abstract

Both the semi-classical and quantum transport properties of F-doped SnO{sub 2} thick films (∼1 μm) were investigated experimentally. We found that the resistivity caused by the thermal phonons obeys Bloch-Grüneisen law from ∼90 to 300 K, while only the diffusive thermopower, which varies linearly with temperature from 300 down to 10 K, can be observed. The phonon-drag thermopower is completely suppressed due to the long electron-phonon relaxation time in the compound. These observations, together with the fact that the carrier concentration has negligible temperature dependence, indicate that the conduction electrons in F-doped SnO{sub 2} films possess free-electron-like characteristics. At low temperatures, the electron-electron scattering dominates over the electron-phonon scattering and governs the inelastic scattering process. The theoretical predications of scattering rates of large- and small-energy-transfer electron-electron scattering processes, which are negligibly weak in three-dimensional disordered conventional conductors, are quantitatively tested in this lower carrier concentration and free-electron-like highly degenerate semiconductor.

Authors:
;  [1]
  1. Tianjin Key Laboratory of Low Dimensional Materials Physics and Preparing Technology, Department of Physics, Tianjin University, Tianjin 300072 (China)
Publication Date:
OSTI Identifier:
22311200
Resource Type:
Journal Article
Resource Relation:
Journal Name: Applied Physics Letters; Journal Volume: 105; Journal Issue: 4; Other Information: (c) 2014 AIP Publishing LLC; Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
75 CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY; CARRIERS; CONCENTRATION RATIO; DOPED MATERIALS; ELECTRON-ELECTRON INTERACTIONS; ENERGY TRANSFER; FILMS; FLUORINE ADDITIONS; INELASTIC SCATTERING; RELAXATION TIME; SEMICONDUCTOR MATERIALS; STRONG INTERACTIONS; TEMPERATURE DEPENDENCE; THREE-DIMENSIONAL CALCULATIONS; TIN OXIDES

Citation Formats

Lang, Wen-Jing, and Li, Zhi-Qing, E-mail: zhiqingli@tju.edu.cn. Linear temperature behavior of thermopower and strong electron-electron scattering in thick F-doped SnO{sub 2} films. United States: N. p., 2014. Web. doi:10.1063/1.4891855.
Lang, Wen-Jing, & Li, Zhi-Qing, E-mail: zhiqingli@tju.edu.cn. Linear temperature behavior of thermopower and strong electron-electron scattering in thick F-doped SnO{sub 2} films. United States. doi:10.1063/1.4891855.
Lang, Wen-Jing, and Li, Zhi-Qing, E-mail: zhiqingli@tju.edu.cn. Mon . "Linear temperature behavior of thermopower and strong electron-electron scattering in thick F-doped SnO{sub 2} films". United States. doi:10.1063/1.4891855.
@article{osti_22311200,
title = {Linear temperature behavior of thermopower and strong electron-electron scattering in thick F-doped SnO{sub 2} films},
author = {Lang, Wen-Jing and Li, Zhi-Qing, E-mail: zhiqingli@tju.edu.cn},
abstractNote = {Both the semi-classical and quantum transport properties of F-doped SnO{sub 2} thick films (∼1 μm) were investigated experimentally. We found that the resistivity caused by the thermal phonons obeys Bloch-Grüneisen law from ∼90 to 300 K, while only the diffusive thermopower, which varies linearly with temperature from 300 down to 10 K, can be observed. The phonon-drag thermopower is completely suppressed due to the long electron-phonon relaxation time in the compound. These observations, together with the fact that the carrier concentration has negligible temperature dependence, indicate that the conduction electrons in F-doped SnO{sub 2} films possess free-electron-like characteristics. At low temperatures, the electron-electron scattering dominates over the electron-phonon scattering and governs the inelastic scattering process. The theoretical predications of scattering rates of large- and small-energy-transfer electron-electron scattering processes, which are negligibly weak in three-dimensional disordered conventional conductors, are quantitatively tested in this lower carrier concentration and free-electron-like highly degenerate semiconductor.},
doi = {10.1063/1.4891855},
journal = {Applied Physics Letters},
number = 4,
volume = 105,
place = {United States},
year = {Mon Jul 28 00:00:00 EDT 2014},
month = {Mon Jul 28 00:00:00 EDT 2014}
}
  • Polycrystalline fluorine-doped SnO{sub 2} (FTO) thin films have been grown by ultrasonic spray pyrolysis on glass substrate. By varying growth conditions, several FTO specimens have been deposited and the study of their structural, electrical, and optical properties has been carried out. By systematically investigating the mobility as a function of carrier density, grain size, and crystallite size, the contribution of each physical mechanism involved in the electron scattering has been derived. A thorough comparison of experimental data and calculations allows to disentangle these different mechanisms and to deduce their relative importance. In particular, the roles of extended structural defects suchmore » as grain or twin boundaries as revealed by electron microscopy or x-ray diffraction along with ionized impurities are discussed. As a consequence, based on the quantitative analysis presented here, an experimental methodology leading to the improvement of the electro-optical properties of FTO thin films is reported. FTO thin films assuming an electrical resistivity as low as 3.7 · 10{sup −4} Ω cm (square sheet resistance of 8 Ω/◻) while retaining good transmittance up to 86% (including substrate effect) in the visible range have been obtained.« less
  • The reaction of Re{sub 2}O{sub 7} with XeF{sub 6} in anhydrous HF provides a convenient route to high-purity ReO{sub 2}F{sub 3}. The fluoride acceptor and Lewis base properties of ReO{sub 2}F{sub 3} have been investigated leading to the formation of [M][ReO{sub 2}F{sub 4}] [M = Li, Na, Cs, N(CH{sub 3}){sub 4}], [K][Re{sub 2}O{sub 4}F{sub 7}], [K][Re{sub 2}O{sub 4}F{sub 7}]{center_dot}2ReO{sub 2}F{sub 3}, [Cs][Re{sub 3}O{sub 6}F{sub 10}], and ReO{sub 2}F{sub 3}(CH{sub 3}CN). The ReO{sub 2}F{sub 4}{sup {minus}}, Re{sub 2}O{sub 4}F{sub 7}{sup {minus}}, and Re{sub 3}O{sub 6}F{sub 10{sup {minus}} anions and the ReO{sub 2}F{sub 3}(CH{sub 3}CN) adduct have been characterized in the solidmore » state by Raman spectroscopy, and the structures [Li][ReO{sub 2}F{sub 4}], [K][Re{sub 2}O{sub 4}F{sub 7}], [K][Re{sub 2}O{sub 4}F{sub 7}]{center_dot}2ReO{sub 2}F{approximately}3}, [Cs][Re{sub 3}O{sub 6}F{sub 10}], and ReO{sub 3}F(CH{sub 3}CN){sub 2}{center_dot}CH{sub 3}CN have been determined by X-ray crystallography. The structure of ReO{sub 2}F{sub 4}{sup {minus}} consists of a cis-dioxo arrangement of Re-O double bonds in which the Re-F bonds trans to the oxygen atoms are significantly lengthened as a result of the trans influence of the oxygens. The Re{sub 2}O{sub 4}F{sub 7}{sup {minus}} and Re{sub 3}O{sub 6}F{sub 10}{sup {minus}} anions and polymeric ReO{sub 2}F{sub 3} are open chains containing fluorine-bridged ReO{sub 2}F{sub 4} units in which each pair of Re-O bonds are cis to each other and the fluorine bridges are trans to oxygens. The trans influence of the oxygens is manifested by elongated terminal Re-F bonds trans to Re-O bonds as in ReO{sub 2}F{sub 4}{sup {minus}} and by the occurrence of both fluorine bridges trans to Re-O bonds. Fluorine-19 NMR spectra show that ReO{sub 2}F{sub 4}{sup {minus}}, Re{sub 2}O{sub 4}F{sub 7}{sup {minus}}, and ReO{sub 2}F{sub 3}(CH{sub 3}CN) have cis-dioxo arrangements in CH{sub 3}CN solution. Density functional theory calculations at the local and nonlocal levels confirm that the cis-dioxo isomers of ReO{sub 2}F{sub 4}{sup {minus}} and ReO{sub 2}F{sub 3}(CH{sub 3}CN), where CH{sub 3}CN is bonded trans to an oxygen, are the energy-minimized structures. The adduct ReO{sub 3}F(CH{sub 3}CN){sub 2}{center_dot}CH{sub 3}CN was obtained by hydrolysis of ReO{sub 2}F{sub 3}(CH{sub 3}CN), and was shown by X-ray crystallography to have a facial arrangement of oxygen atoms on rhenium.« less
  • Highlights: Black-Right-Pointing-Pointer The temperature dependence of electronic structures has been investigated by transmittance spectra from 5.3 to 300 K. Black-Right-Pointing-Pointer The optical band gap shows a red shift with increasing Mn composition and decreases with the temperature. Black-Right-Pointing-Pointer The band gap narrowing parameter [E{sub g}(5.3 K)-E{sub g}(300 K)] linearly decreases with the Mn composition. Black-Right-Pointing-Pointer There are two temperature regimes for the Urbach energy. -- Abstract: Mn-doped SnO{sub 2} (SMO) nanocrystalline films with the composition from 2.5 to 12.5% have been prepared on quartz substrates by pulsed laser deposition. The temperature dependence of electronic structures and optical constants in themore » SMO films have been investigated by transmittance spectra from 5.3 to 300 K. Optical response functions have been extracted by fitting the transmittance spectra in the photon energy range of 0.5-6.5 eV with the Adachi's model. It was found that the absorption edge presents a red-shift trend with increasing Mn composition, and the optical band gap (OBG) is varied between 4.22 and 3.44 eV. Moreover, as the Mn composition increases, the temperature dependence of OBG becomes weaker. The band gap narrowing value [(5.3 K)-(300 K)] has been reduced from 98 to 3 meV and linearly decreases with the Mn composition. The phenomena could be attributed to the transition from low doping level SnO{sub 2} band-like states to Mn-related localized states. Moreover, the Urbach energy shows the degree of the structural disorder, which could be explained by an empirical formulas in different temperature regimes.« less
  • By antimony doping tin oxide, SnO{sub 2}:Sb (ATO), below 1.0% Sb concentration, controllable n-type doping was realized. Plasma-assisted molecular beam epitaxy has been used to grow high quality single crystalline epitaxial thin films of unintentionally doped (UID) and Sb-doped SnO{sub 2} on r-plane sapphire substrates. A UID thickness series showed an electron concentration of 7.9x10{sup 18} cm{sup -3} for a 26 nm film, which decreased to 2.7x10{sup 17} cm{sup -3} for a 1570 nm film, whereas the mobility increased from 15 to 103 cm{sup 2}/V s, respectively. This series illustrated the importance of a buffer layer to separate unintentional heterointerfacemore » effects from the effect of low Sb doping. Unambiguous bulk electron doping was established by keeping the Sb concentration constant but changing the Sb-doped layer thickness. A separate doping series correlated Sb concentration and bulk electron doping. Films containing between 9.8x10{sup 17} and 2.8x10{sup 20} Sb atoms/cm{sup 3} generated an electron concentration of 1.1x10{sup 18}-2.6x10{sup 20} cm{sup -3}. As the atomic Sb concentration increased, the mobility and resistivity decreased from 110 to 36 cm{sup 2}/V s and 5.1x10{sup -2} to 6.7x10{sup -4} OMEGA cm, respectively. The Sb concentration was determined by secondary ion mass spectrometry. X-ray diffraction and atomic force microscopy measurements showed no detrimental effects arising from the highest levels of Sb incorporation. Temperature dependent Hall measurements established a lower limit for the Sb electron activation energy of 13.2 meV and found that films with greater than 4.9x10{sup 19} electrons/cm{sup 3} were degenerately doped. Within experimental uncertainties, 100% donor efficiency was determined for Sb-doped SnO{sub 2} in the range studied.« less
  • The authors report the surface morphology, optical, electrical, thermal and humidity impacts, and electromagnetic interference properties of fluorine-doped tin oxide (SnO{sub 2}:F or “FTO”) thin films on a flexible polyethylene terephthalate (PET) substrate fabricated by a pilot-scale electron cyclotron resonance–metal organic chemical vapor deposition (PS ECR-MOCVD). The characteristics of large area FTO thin films were compared with a commercially available transparent conductive electrode made of tin-doped indium oxide (ITO), prepared with an identical film and PET thickness of 125 nm and 188 μm, respectively. The results revealed that the as-prepared FTO thin films exhibited comparable performances with the incumbent ITO films, includingmore » a high optical transmittance of 97% (substrate-subtracted), low electrical resistivity of about 5 × 10{sup −3} Ω cm, improved electrical and optical performances due to the external thermal and humidity impact, and an excellent shielding effectiveness of electromagnetic interference of nearly 2.3 dB. These excellent performances of the FTO thin films were strongly attributed to the design of the PS ECR-MOCVD, which enabled a uniform plasma environment resulting from a proper mixture of electromagnetic profiles and microwave power.« less