skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Magnetization reversal driven by a spin torque oscillator

Abstract

Magnetization reversal of a magnetic free layer under spin transfer torque (STT) effect from a magnetic hard layer with a fixed magnetization direction and an oscillating layer is investigated. By including STT from the oscillating layer with in-plane anisotropy and orthogonal polarizer, magnetization-time dependence of free layer is determined. The results show that the frequency and amplitude of oscillations can be varied by adjusting the current density and magnetic properties. For an optimal oscillation frequency (f{sub opt}), a reduction of the switching time (t{sub 0}) of the free layer is observed. Both f{sub opt} and t{sub 0} increase with the anisotropy field of the free layer.

Authors:
 [1]
  1. Department of Physics, Sultan Qaboos University, P.O. Box 36, PC 123 Muscat (Oman)
Publication Date:
OSTI Identifier:
22311025
Resource Type:
Journal Article
Resource Relation:
Journal Name: Applied Physics Letters; Journal Volume: 105; Journal Issue: 9; Other Information: (c) 2014 AIP Publishing LLC; Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
75 CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY; AMPLITUDES; ANISOTROPY; CURRENT DENSITY; LAYERS; MAGNETIC PROPERTIES; MAGNETIZATION; OSCILLATIONS; OSCILLATORS; REDUCTION; SPIN; TIME DEPENDENCE; TORQUE

Citation Formats

Sbiaa, R., E-mail: rachid@squ.edu.om. Magnetization reversal driven by a spin torque oscillator. United States: N. p., 2014. Web. doi:10.1063/1.4895029.
Sbiaa, R., E-mail: rachid@squ.edu.om. Magnetization reversal driven by a spin torque oscillator. United States. doi:10.1063/1.4895029.
Sbiaa, R., E-mail: rachid@squ.edu.om. Mon . "Magnetization reversal driven by a spin torque oscillator". United States. doi:10.1063/1.4895029.
@article{osti_22311025,
title = {Magnetization reversal driven by a spin torque oscillator},
author = {Sbiaa, R., E-mail: rachid@squ.edu.om},
abstractNote = {Magnetization reversal of a magnetic free layer under spin transfer torque (STT) effect from a magnetic hard layer with a fixed magnetization direction and an oscillating layer is investigated. By including STT from the oscillating layer with in-plane anisotropy and orthogonal polarizer, magnetization-time dependence of free layer is determined. The results show that the frequency and amplitude of oscillations can be varied by adjusting the current density and magnetic properties. For an optimal oscillation frequency (f{sub opt}), a reduction of the switching time (t{sub 0}) of the free layer is observed. Both f{sub opt} and t{sub 0} increase with the anisotropy field of the free layer.},
doi = {10.1063/1.4895029},
journal = {Applied Physics Letters},
number = 9,
volume = 105,
place = {United States},
year = {Mon Sep 01 00:00:00 EDT 2014},
month = {Mon Sep 01 00:00:00 EDT 2014}
}
  • We present time-resolved x-ray images with 30 nm spatial and 70 ps temporal resolution, which reveal details of the spatially resolved magnetization evolution in nanoscale samples of various dimensions during reversible spin-torque switching processes. Our data in conjunction with micromagnetic simulations suggest a simple unified picture of magnetic switching based on the motion of a magnetic vortex. With decreasing size of the magnetic element the path of the vortex core moves from inside to outside of the nanoelement, and the switching process evolves from a curled nonuniform to an increasingly uniform mode.
  • We use scanning electron microscopy with polarization analysis to image deterministic, spin-orbit torque-driven magnetization reversal of in-plane magnetized CoFeB rectangles in zero applied magnetic field. The spin-orbit torque is generated by running a current through heavy metal microstrips, either Pt or Ta, upon which the CoFeB rectangles are deposited. We image the CoFeB magnetization before and after a current pulse to see the effect of spin-orbit torque on the magnetic nanostructure. The observed changes in magnetic structure can be complex, deviating significantly from a simple macrospin approximation, especially in larger elements. Overall, however, the directions of the magnetization reversal inmore » the Pt and Ta devices are opposite, consistent with the opposite signs of the spin Hall angles of these materials. Lastly, our results elucidate the effects of current density, geometry, and magnetic domain structure on magnetization switching driven by spin-orbit torque.« less
  • Oscillation frequency of spin torque oscillator with a perpendicularly magnetized free layer and an in-plane magnetized pinned layer is theoretically investigated by taking into account the field-like torque. It is shown that the field-like torque plays an important role in finding the balance between the energy supplied by the spin torque and the dissipation due to the damping, which results in a steady precession. The validity of the developed theory is confirmed by performing numerical simulations based on the Landau-Lifshitz-Gilbert equation.
  • We theoretically investigate the dynamics of magnetization in ferromagnetic thin films induced by spin-orbit interaction with Slonczewski-like spin transfer torque. We reproduce the experimental results of perpendicular magnetic anisotropy films by micromagnetic simulation. Due to the spin-orbit interaction, the magnetization can be switched by changing the direction of the current with the assistant of magnetic field. By increasing the current amplitude, wider range of switching events can be achieved. Time evolution of magnetization has provided us a clear view of the process, and explained the role of minimum external field. Slonczewski-like spin transfer torque modifies the magnetization when current ismore » present. The magnitude of the minimum external field is determined by the strength of the Slonczewski-like spin transfer torque. The investigations may provide potential applications in magnetic memories.« less
  • The spin transfer torque magnetization reversal of synthetic ferrimagnetic free layers under pulsed temperature rise was numerically studied by solving the Landau–Lifshitz–Gilbert equation, taking into account the stochastic random fields, the temperature dependence of magnetic parameters, and the spin torque terms. The anti-parallel magnetization configuration was retained at the elevated temperature, due to interlayer dipole coupling. A significant thermal assistance effect, resulting in a 40% reduction in the switching current, was demonstrated during a nanosecond pulsed temperature rise up to 77% of the Curie temperature.