skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: New tools for the systematic analysis and visualization of electronic excitations. II. Applications

Abstract

The excited states of a diverse set of molecules are examined using a collection of newly implemented analysis methods. These examples expose the particular power of three of these tools: (i) natural difference orbitals (the eigenvectors of the difference density matrix) for the description of orbital relaxation effects, (ii) analysis of the one-electron transition density matrix in terms of an electron-hole picture to identify charge resonance and excitonic correlation effects, and (iii) state-averaged natural transition orbitals for a compact simultaneous representation of several states. Furthermore, the utility of a wide array of additional analysis methods is highlighted. Five molecules with diverse excited state characteristics are chosen for these tasks: pyridine as a prototypical small heteroaromatic molecule, a model system of six neon atoms to study charge resonance effects, hexatriene in its neutral and radical cation forms to exemplify the cases of double excitations and spin-polarization, respectively, and a model iridium complex as a representative metal organic compound. Using these examples a number of phenomena, which are at first sight unexpected, are highlighted and their physical significance is discussed. Moreover, the generality of the conclusions of this paper is verified by a comparison of single- and multireference ab initio methods.

Authors:
; ; ;  [1]
  1. Interdisciplinary Center for Scientific Computing, Ruprecht-Karls-University, Im Neuenheimer Feld 368, 69120 Heidelberg (Germany)
Publication Date:
OSTI Identifier:
22308986
Resource Type:
Journal Article
Resource Relation:
Journal Name: Journal of Chemical Physics; Journal Volume: 141; Journal Issue: 2; Other Information: (c) 2014 AIP Publishing LLC; Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
37 INORGANIC, ORGANIC, PHYSICAL AND ANALYTICAL CHEMISTRY; ATOMS; CATIONS; DENSITY MATRIX; EIGENVECTORS; ELECTRONS; EXCITATION; EXCITED STATES; IRIDIUM COMPLEXES; MOLECULES; PYRIDINE; RADICALS; RESONANCE; SPIN ORIENTATION

Citation Formats

Plasser, Felix, E-mail: felix.plasser@iwr.uni-heidelberg.de, Bäppler, Stefanie A., Wormit, Michael, and Dreuw, Andreas. New tools for the systematic analysis and visualization of electronic excitations. II. Applications. United States: N. p., 2014. Web. doi:10.1063/1.4885820.
Plasser, Felix, E-mail: felix.plasser@iwr.uni-heidelberg.de, Bäppler, Stefanie A., Wormit, Michael, & Dreuw, Andreas. New tools for the systematic analysis and visualization of electronic excitations. II. Applications. United States. doi:10.1063/1.4885820.
Plasser, Felix, E-mail: felix.plasser@iwr.uni-heidelberg.de, Bäppler, Stefanie A., Wormit, Michael, and Dreuw, Andreas. Mon . "New tools for the systematic analysis and visualization of electronic excitations. II. Applications". United States. doi:10.1063/1.4885820.
@article{osti_22308986,
title = {New tools for the systematic analysis and visualization of electronic excitations. II. Applications},
author = {Plasser, Felix, E-mail: felix.plasser@iwr.uni-heidelberg.de and Bäppler, Stefanie A. and Wormit, Michael and Dreuw, Andreas},
abstractNote = {The excited states of a diverse set of molecules are examined using a collection of newly implemented analysis methods. These examples expose the particular power of three of these tools: (i) natural difference orbitals (the eigenvectors of the difference density matrix) for the description of orbital relaxation effects, (ii) analysis of the one-electron transition density matrix in terms of an electron-hole picture to identify charge resonance and excitonic correlation effects, and (iii) state-averaged natural transition orbitals for a compact simultaneous representation of several states. Furthermore, the utility of a wide array of additional analysis methods is highlighted. Five molecules with diverse excited state characteristics are chosen for these tasks: pyridine as a prototypical small heteroaromatic molecule, a model system of six neon atoms to study charge resonance effects, hexatriene in its neutral and radical cation forms to exemplify the cases of double excitations and spin-polarization, respectively, and a model iridium complex as a representative metal organic compound. Using these examples a number of phenomena, which are at first sight unexpected, are highlighted and their physical significance is discussed. Moreover, the generality of the conclusions of this paper is verified by a comparison of single- and multireference ab initio methods.},
doi = {10.1063/1.4885820},
journal = {Journal of Chemical Physics},
number = 2,
volume = 141,
place = {United States},
year = {Mon Jul 14 00:00:00 EDT 2014},
month = {Mon Jul 14 00:00:00 EDT 2014}
}
  • A variety of density matrix based methods for the analysis and visualization of electronic excitations are discussed and their implementation within the framework of the algebraic diagrammatic construction of the polarization propagator is reported. Their mathematical expressions are given and an extensive phenomenological discussion is provided to aid the interpretation of the results. Starting from several standard procedures, e.g., population analysis, natural orbital decomposition, and density plotting, we proceed to more advanced concepts of natural transition orbitals and attachment/detachment densities. In addition, special focus is laid on information coded in the transition density matrix and its phenomenological analysis in termsmore » of an electron-hole picture. Taking advantage of both the orbital and real space representations of the density matrices, the physical information in these analysis methods is outlined, and similarities and differences between the approaches are highlighted. Moreover, new analysis tools for excited states are introduced including state averaged natural transition orbitals, which give a compact description of a number of states simultaneously, and natural difference orbitals (defined as the eigenvectors of the difference density matrix), which reveal details about orbital relaxation effects.« less
  • To support interactive visualization and analysis of complex, large-scale climate data sets, UV-CDAT integrates a powerful set of scientific computing libraries and applications to foster more efficient knowledge discovery. Connected through a provenance framework, the UV-CDAT components can be loosely coupled for fast integration or tightly coupled for greater functionality and communication with other components. This framework addresses many challenges in the interactive visual analysis of distributed large-scale data for the climate community.
  • Understanding the effect of aerosols on climate requires knowledge of the size and chemical composition of individual aerosol particles - two fundamental properties that determine an aerosol’s optical properties and ability to serve as cloud condensation or ice nuclei. Here we present miniSPLAT, our new aircraft compatible single particle mass spectrometer, that measures in-situ and in real-time size and chemical composition of individual aerosol particles with extremely high sensitivity, temporal resolution, and sizing precision on the order of a monolayer. miniSPLAT operates in dual data acquisition mode to measure, in addition to single particle size and composition, particle number concentrations,more » size distributions, density, and asphericity with high temporal resolution. When compared to our previous instrument, SPLAT II, miniSPLAT has been significantly reduced in size, weight, and power consumption without loss in performance. We also present ND-Scope, our newly developed interactive visual analytics software package. ND-Scope is designed to explore and visualize the vast amount of complex, multidimensional data acquired by our single particle mass spectrometers, along with other aerosol and cloud characterization instruments on-board aircraft. We demonstrate that ND-Scope makes it possible to visualize the relationships between different observables and to view the data in a geo-spatial context, using the interactive and fully coupled Google Earth and Parallel Coordinates displays. Here we illustrate the utility of ND-Scope to visualize the spatial distribution of atmospheric particles of different compositions, and explore the relationship between individual particle composition and their activity as cloud condensation nuclei.« less
  • In the past decade, sheet metal forming simulation became a well established tool to predict the formability of parts. In the automotive industry, this has enabled significant reduction in the cost and time for vehicle design and development, and has helped to improve the quality and performance of vehicle parts. However, production stoppages for troubleshooting and unplanned die maintenance, as well as production quality fluctuations continue to plague manufacturing cost and time. The focus therefore has shifted in recent times beyond mere feasibility to robustness of the product and process being engineered. Ensuring robustness is the next big challenge formore » the virtual tryout / simulation technology.We introduce new methods, based on systematic stochastic simulations, to visualize the behavior of the part during the whole forming process -- in simulation as well as in production. Sensitivity analysis explains the response of the part to changes in influencing parameters. Virtual tryout allows quick exploration of changed designs and conditions. Robust design and manufacturing guarantees quality and process capability for the production process. While conventional simulations helped to reduce development time and cost by ensuring feasible processes, robustness engineering tools have the potential for far greater cost and time savings.Through examples we illustrate how expected and unexpected behavior of deep drawing parts may be tracked down, identified and assigned to the influential parameters. With this knowledge, defects can be eliminated or springback can be compensated e.g.; the response of the part to uncontrollable noise can be predicted and minimized. The newly introduced methods enable more reliable and predictable stamping processes in general.« less