skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Adapting SAFT-γ perturbation theory to site-based molecular dynamics simulation. II. Confined fluids and vapor-liquid interfaces

Abstract

In this work, a new classical density functional theory is developed for group-contribution equations of state (EOS). Details of implementation are demonstrated for the recently-developed SAFT-γ WCA EOS and selective applications are studied for confined fluids and vapor-liquid interfaces. The acronym WCA (Weeks-Chandler-Andersen) refers to the characterization of the reference part of the third-order thermodynamic perturbation theory applied in formulating the EOS. SAFT-γ refers to the particular form of “statistical associating fluid theory” that is applied to the fused-sphere, heteronuclear, united-atom molecular models of interest. For the monomer term, the modified fundamental measure theory is extended to WCA-spheres. A new chain functional is also introduced for fused and soft heteronuclear chains. The attractive interactions are taken into account by considering the structure of the fluid, thus elevating the theory beyond the mean field approximation. The fluctuations of energy are also included via a non-local third-order perturbation theory. The theory includes resolution of the density profiles of individual groups such as CH{sub 2} and CH{sub 3} and satisfies stoichiometric constraints for the density profiles. New molecular simulations are conducted to demonstrate the accuracy of each Helmholtz free energy contribution in reproducing the microstructure of inhomogeneous systems at the united-atom level ofmore » coarse graining. At each stage, comparisons are made to assess where the present theory stands relative to the current state of the art for studying inhomogeneous fluids. Overall, it is shown that the characteristic features of real molecular fluids are captured both qualitatively and quantitatively. For example, the average pore density deviates ∼2% from simulation data for attractive pentadecane in a 2-nm slit pore. Another example is the surface tension of ethane/heptane mixture, which deviates ∼1% from simulation data while the theory reproduces the excess accumulation of ethane at the interface.« less

Authors:
;  [1]
  1. Department of Chemical and Biomolecular Engineering, The University of Akron, Akron, Ohio 44325 (United States)
Publication Date:
OSTI Identifier:
22308581
Resource Type:
Journal Article
Resource Relation:
Journal Name: Journal of Chemical Physics; Journal Volume: 141; Journal Issue: 2; Other Information: (c) 2014 AIP Publishing LLC; Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
37 INORGANIC, ORGANIC, PHYSICAL AND ANALYTICAL CHEMISTRY; ACCURACY; COMPARATIVE EVALUATIONS; DENSITY; DENSITY FUNCTIONAL METHOD; EQUATIONS OF STATE; ETHANE; FREE ENERGY; HEPTANE; INTERFACES; LIQUIDS; MEASURE THEORY; MICROSTRUCTURE; MOLECULAR DYNAMICS METHOD; MOLECULAR MODELS; PERTURBATION THEORY; SIMULATION; SURFACE TENSION; VAPORS

Citation Formats

Ghobadi, Ahmadreza F., and Elliott, J. Richard, E-mail: elliot1@uakron.edu. Adapting SAFT-γ perturbation theory to site-based molecular dynamics simulation. II. Confined fluids and vapor-liquid interfaces. United States: N. p., 2014. Web. doi:10.1063/1.4886398.
Ghobadi, Ahmadreza F., & Elliott, J. Richard, E-mail: elliot1@uakron.edu. Adapting SAFT-γ perturbation theory to site-based molecular dynamics simulation. II. Confined fluids and vapor-liquid interfaces. United States. doi:10.1063/1.4886398.
Ghobadi, Ahmadreza F., and Elliott, J. Richard, E-mail: elliot1@uakron.edu. Mon . "Adapting SAFT-γ perturbation theory to site-based molecular dynamics simulation. II. Confined fluids and vapor-liquid interfaces". United States. doi:10.1063/1.4886398.
@article{osti_22308581,
title = {Adapting SAFT-γ perturbation theory to site-based molecular dynamics simulation. II. Confined fluids and vapor-liquid interfaces},
author = {Ghobadi, Ahmadreza F. and Elliott, J. Richard, E-mail: elliot1@uakron.edu},
abstractNote = {In this work, a new classical density functional theory is developed for group-contribution equations of state (EOS). Details of implementation are demonstrated for the recently-developed SAFT-γ WCA EOS and selective applications are studied for confined fluids and vapor-liquid interfaces. The acronym WCA (Weeks-Chandler-Andersen) refers to the characterization of the reference part of the third-order thermodynamic perturbation theory applied in formulating the EOS. SAFT-γ refers to the particular form of “statistical associating fluid theory” that is applied to the fused-sphere, heteronuclear, united-atom molecular models of interest. For the monomer term, the modified fundamental measure theory is extended to WCA-spheres. A new chain functional is also introduced for fused and soft heteronuclear chains. The attractive interactions are taken into account by considering the structure of the fluid, thus elevating the theory beyond the mean field approximation. The fluctuations of energy are also included via a non-local third-order perturbation theory. The theory includes resolution of the density profiles of individual groups such as CH{sub 2} and CH{sub 3} and satisfies stoichiometric constraints for the density profiles. New molecular simulations are conducted to demonstrate the accuracy of each Helmholtz free energy contribution in reproducing the microstructure of inhomogeneous systems at the united-atom level of coarse graining. At each stage, comparisons are made to assess where the present theory stands relative to the current state of the art for studying inhomogeneous fluids. Overall, it is shown that the characteristic features of real molecular fluids are captured both qualitatively and quantitatively. For example, the average pore density deviates ∼2% from simulation data for attractive pentadecane in a 2-nm slit pore. Another example is the surface tension of ethane/heptane mixture, which deviates ∼1% from simulation data while the theory reproduces the excess accumulation of ethane at the interface.},
doi = {10.1063/1.4886398},
journal = {Journal of Chemical Physics},
number = 2,
volume = 141,
place = {United States},
year = {Mon Jul 14 00:00:00 EDT 2014},
month = {Mon Jul 14 00:00:00 EDT 2014}
}
  • In Paper I [A. F. Ghobadi and J. R. Elliott, J. Chem. Phys. 139(23), 234104 (2013)], we showed that how a third-order Weeks–Chandler–Anderson (WCA) Thermodynamic Perturbation Theory and molecular simulation can be integrated to characterize the repulsive and dispersive contributions to the Helmholtz free energy for realistic molecular conformations. To this end, we focused on n-alkanes to develop a theory for fused and soft chains. In Paper II [A. F. Ghobadi and J. R. Elliott, J. Chem. Phys. 141(2), 024708 (2014)], we adapted the classical Density Functional Theory and studied the microstructure of the realistic molecular fluids in confined geometriesmore » and vapor-liquid interfaces. We demonstrated that a detailed consistency between molecular simulation and theory can be achieved for both bulk and inhomogeneous phases. In this paper, we extend the methodology to molecules with partial charges such as carbon dioxide, water, 1-alkanols, nitriles, and ethers. We show that the electrostatic interactions can be captured via an effective association potential in the framework of Statistical Associating Fluid Theory (SAFT). Implementation of the resulting association contribution in assessing the properties of these molecules at confined geometries and interfaces presents satisfactory agreement with molecular simulation and experimental data. For example, the predicted surface tension deviates less than 4% comparing to full potential simulations. Also, the theory, referred to as SAFT-γ WCA, is able to reproduce the specific orientation of hydrophilic head and hydrophobic tail of 1-alkanols at the vapor-liquid interface of water.« less
  • In this work, we aim to develop a version of the Statistical Associating Fluid Theory (SAFT)-γ equation of state (EOS) that is compatible with united-atom force fields, rather than experimental data. We rely on the accuracy of the force fields to provide the relation to experimental data. Although, our objective is a transferable theory of interfacial properties for soft and fused heteronuclear chains, we first clarify the details of the SAFT-γ approach in terms of site-based simulations for homogeneous fluids. We show that a direct comparison of Helmholtz free energy to molecular simulation, in the framework of a third ordermore » Weeks-Chandler-Andersen perturbation theory, leads to an EOS that takes force field parameters as input and reproduces simulation results for Vapor-Liquid Equilibria (VLE) calculations. For example, saturated liquid density and vapor pressure of n-alkanes ranging from methane to dodecane deviate from those of the Transferable Potential for Phase Equilibria (TraPPE) force field by about 0.8% and 4%, respectively. Similar agreement between simulation and theory is obtained for critical properties and second virial coefficient. The EOS also reproduces simulation data of mixtures with about 5% deviation in bubble point pressure. Extension to inhomogeneous systems and united-atom site types beyond those used in description of n-alkanes will be addressed in succeeding papers.« less
  • Evidence for capillary waves at a liquid/vapor interface are presented from extensive molecular dynamics simulations of a system containing up to 1.24 million Lennard-Jones particles. Careful measurements show that the total interfacial width depends logarithmically on L{sub {parallel}}, the length of the simulation cell parallel to the interface, as predicted theoretically. The strength of the divergence of the interfacial width on L{sub {parallel}} depends inversely on the surface tension {gamma}. This allows us to measure {gamma} two ways since {gamma} can also be obtained from the difference in the pressure parallel and perpendicular to the interface. These two independent measuresmore » of {gamma} agree provided that the interfacial order parameter profile is fit to an error function and not a hyperbolic tangent, as often assumed. We explore why these two common fitting functions give different results for {gamma}.« less
  • The liquid-vapor coexistence (LV) of bulk and confined quantum fluids has been studied by Monte Carlo computer simulation for particles interacting via a semiclassical effective pair potential V{sub eff}(r) = V{sub LJ} + V{sub Q}, where V{sub LJ} is the Lennard-Jones 12-6 potential (LJ) and V{sub Q} is the first-order Wigner-Kirkwood (WK-1) quantum potential, that depends on β = 1/kT and de Boer's quantumness parameter Λ=h/σ√(mε), where k and h are the Boltzmann's and Planck's constants, respectively, m is the particle's mass, T is the temperature of the system, and σ and ε are the LJ potential parameters. The non-conformalmore » properties of the system of particles interacting via the effective pair potential V{sub eff}(r) are due to Λ, since the LV phase diagram is modified by varying Λ. We found that the WK-1 system gives an accurate description of the LV coexistence for bulk phases of several quantum fluids, obtained by the Gibbs Ensemble Monte Carlo method (GEMC). Confinement effects were introduced using the Canonical Ensemble (NVT) to simulate quantum fluids contained within parallel hard walls separated by a distance L{sub p}, within the range 2σ ⩽ L{sub p} ⩽ 6σ. The critical temperature of the system is reduced by decreasing L{sub p} and increasing Λ, and the liquid-vapor transition is not longer observed for L{sub p}/σ < 2, in contrast to what has been observed for the classical system.« less
  • Extensive molecular dynamics simulations are carried out to study the molecular interactions, liquid states, and liquid/vapor properties of dichloromethane. The study is also extended to the equilibrium properties of the liquid/liquid interface of water-dichloromethane. The intermolecular interactions among water, dichloromethane, and water-dichloromethane are described using our polarizable potential models. The equilibrium properties of liquid dichloromethane, including the radial distribution functions, the intermolecular structural factor, the self-diffusion coefficient, and the dielectric constant, are evaluated. The dielectric constant is computed using Ewald summation techniques and the computed result compared reasonably well with the available experimental data. Properties such as surface tensions andmore » density profiles of liquid/vapor dichloromethane are evaluated. We found that the computed surface tensions for several temperatures are in excellent agreement with experimental data. The computed density profile of the liquid/liquid interface of water-dichloromethane is averaged over 1 ns and we found the computed profile to be quite smooth and stable. The effect of polarization on the liquid/liquid interfacial equilibrium properties is evaluated by computing the dipole moments of water and dichloromethane molecules as a function of the distance normal to the interface. We found that these values deviated significantly from the simulations that are based on nonpolarizable potential models. We attribute these observations to the changes in the electric fields around the water and dichloromethane molecules near the interface. {copyright} {ital 1999 American Institute of Physics.}« less