skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: ITER diagnostic systems in development in Ioffe Institute

Abstract

Three diagnostic systems are being developed in Ioffe Institute for ITER. Those are Neutral Particle Analysis (NPA), Thomson Scattering in Divertor (TSD) and Gamma Spectroscopy (GS). The main objective of NPA in ITER is to measure D/T fuel ration in plasma on the basis of measurement of neutralized fluxes of D and T ions [1]. Fuel ratio is one of the key parameters needed by ITER control system to provide the optimal conditions in plasma and the most effective plasma burning. Another objective is to measure the distribution function of fast ions (including alpha particles) generated as a result of the additional heating and nuclear fusion reactions. Thomson Scattering in Divertor (TSD) [2] will be used to measure electron temperature and density in the scrape-off layer in outer leg of ITER divertor. The main task of TSD is to protect the machine from divertor overloading. Gamma Spectroscopy (GS) [3] is based on the measurement of spectral lines of MeV range gammas generated in nuclear reactions in plasma. 2-D gamma-ray emission measurements give valuable information on the confined alpha particles in DT plasma. They also provide important information on the location of MeV range runaway electron beams in ITER plasma. Formore » all three cases the physical basis and instrumentation are presented. The simple NPA version for measurements of D/T ratio in DEMO is also briefly described.« less

Authors:
; ; ; ; ; ; ;  [1]
  1. A.F.Ioffe Physical-Technical Institute of Russian Academy of Sciences, Politechnicheskaya 26, St. Petersburg, 194021 (Russian Federation)
Publication Date:
OSTI Identifier:
22308289
Resource Type:
Journal Article
Resource Relation:
Journal Name: AIP Conference Proceedings; Journal Volume: 1612; Journal Issue: 1; Conference: International conference on fusion reactor diagnostics, Varenna (Italy), 9-13 Sep 2013; Other Information: (c) 2014 AIP Publishing LLC; Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
73 NUCLEAR PHYSICS AND RADIATION PHYSICS; ALPHA PARTICLES; DATA; DISTRIBUTION FUNCTIONS; DIVERTORS; GAMMA SPECTROSCOPY; HEAVY ION FUSION REACTIONS; ITER TOKAMAK; MEV RANGE; PLASMA; PLASMA SCRAPE-OFF LAYER; RUNAWAY ELECTRONS; THOMSON SCATTERING

Citation Formats

Petrov, M., Afanasyev, V., Petrov, S., Mironov, M., Mukhin, E., Tolstyakov, S., Chugunov, I., and Shevelev, A.. ITER diagnostic systems in development in Ioffe Institute. United States: N. p., 2014. Web. doi:10.1063/1.4894051.
Petrov, M., Afanasyev, V., Petrov, S., Mironov, M., Mukhin, E., Tolstyakov, S., Chugunov, I., & Shevelev, A.. ITER diagnostic systems in development in Ioffe Institute. United States. doi:10.1063/1.4894051.
Petrov, M., Afanasyev, V., Petrov, S., Mironov, M., Mukhin, E., Tolstyakov, S., Chugunov, I., and Shevelev, A.. Thu . "ITER diagnostic systems in development in Ioffe Institute". United States. doi:10.1063/1.4894051.
@article{osti_22308289,
title = {ITER diagnostic systems in development in Ioffe Institute},
author = {Petrov, M. and Afanasyev, V. and Petrov, S. and Mironov, M. and Mukhin, E. and Tolstyakov, S. and Chugunov, I. and Shevelev, A.},
abstractNote = {Three diagnostic systems are being developed in Ioffe Institute for ITER. Those are Neutral Particle Analysis (NPA), Thomson Scattering in Divertor (TSD) and Gamma Spectroscopy (GS). The main objective of NPA in ITER is to measure D/T fuel ration in plasma on the basis of measurement of neutralized fluxes of D and T ions [1]. Fuel ratio is one of the key parameters needed by ITER control system to provide the optimal conditions in plasma and the most effective plasma burning. Another objective is to measure the distribution function of fast ions (including alpha particles) generated as a result of the additional heating and nuclear fusion reactions. Thomson Scattering in Divertor (TSD) [2] will be used to measure electron temperature and density in the scrape-off layer in outer leg of ITER divertor. The main task of TSD is to protect the machine from divertor overloading. Gamma Spectroscopy (GS) [3] is based on the measurement of spectral lines of MeV range gammas generated in nuclear reactions in plasma. 2-D gamma-ray emission measurements give valuable information on the confined alpha particles in DT plasma. They also provide important information on the location of MeV range runaway electron beams in ITER plasma. For all three cases the physical basis and instrumentation are presented. The simple NPA version for measurements of D/T ratio in DEMO is also briefly described.},
doi = {10.1063/1.4894051},
journal = {AIP Conference Proceedings},
number = 1,
volume = 1612,
place = {United States},
year = {Thu Aug 21 00:00:00 EDT 2014},
month = {Thu Aug 21 00:00:00 EDT 2014}
}
  • Research on neutral particle diagnostics of thermonuclear plasmas that has been carried out in recent years at the Ioffe Physicotechnical Institute of the Russian Academy of Sciences (St. Petersburg, Russia) is reviewed. Work on the creation and improvement of neutral atom analyzers was done in two directions: for potential applications (in particular, on the International Thermonuclear Experimental Reactor, which is now under construction at Cadarache in France) and for investigation of the ion plasma component in various devices (in particular, in the largest tokamaks, such as JET, TFTR, and JT-60). Neutral atom analyzers are the main tool for studying themore » behavior of hydrogen ions and isotopes in magnetic confinement systems. They make it possible to determine energy spectra, to perform the isotope analysis of atom fluxes from the plasma, to measure the absolute intensity of the fluxes, and to record how these parameters vary with time. A comparative description of the analyzers developed in recent years at the Ioffe Institute is given. These are ACORD-12/24 analyzers for recording 0.2-100-keV hydrogen and deuterium atoms with a tunable range of simultaneously measured energies, CNPA compact analyzers for a fixed energy gain in the ranges 80-1000 eV and 0.8-100 keV, an ISEP analyzer for simultaneously recording the atoms of all the three hydrogen isotopes (H, D, and T) in the energy range 5-700 keV, and GEMMA analyzers for recording atom fluxes of hydrogen and helium isotopes in the range 0.1-4 MeV. The scintillating detectors of the ISEP and GEMMA analyzers have a lowered sensitivity to neutrons and thus can operate without additional shielding in neutron fields of up to 10{sup 9} n/(cm{sup 2} s). These two types of analyzers, intended to operate under deuterium-tritium plasma conditions, are prototypes of atom analyzers created at the Ioffe Institute for use in the International Thermonuclear Experimental Reactor. With these analyzers, a number of new results have been obtained in recent years in various devices. Some results are presented from investigation of ions in the Globus-M spherical tokamak, the W7-AS stellarator, and the JET tokamak by means of the analyzers developed at the Ioffe Institute. Challenges and opportunities for applying these diagnostics in the International Thermonuclear Experimental Reactor project are discussed.« less
  • The present status of the investigations with ITER-candidate mirror materials and directed on solution of the in-vessel mirror problem, are presented in the paper. The current tasks in the R and D of diagnostic mirrors and outstanding questions are discussed.
  • A RAMI (Reliability, Availability, Maintainability, Inspectability) analysis has been performed for the heating (and current drive) neutral beam (HNB) and diagnostic neutral beam (DNB) systems of the ITER device. The objective of these analyses is to implement RAMI engineering requirements for design and testing to prepare a reliability-centred plan for commissioning, operation, and maintenance of the system in the framework of technical risk control to support the overall ITER Project. These RAMI requirements will correspond to the RAMI targets for the ITER project and the compensating provisions to reach them as deduced from the necessary actions to decrease the riskmore » level of the function failure modes. The RAMI analyses results have to match with the procurement plan of the systems.« less
  • The results of experimental studies into efficiency of removal of films with a complex composition from metal mirrors by pulsed fiber laser irradiation are presented. It is shown that the initial reflectivity of optical elements can be restored by the selection of modes of irradiation impacting the surface with the sputtered film. Effective cleaning is performed by radiation with a power density lower than 10{sup 7} W/cm{sup 2}. The removal of contaminations at such a relatively low power density occurs in a solid phase, owing to which the thermal effect on the mirror is insignificant.