# Construction of the noncommutative complex ball

## Abstract

We describe the construction of the noncommutative complex ball whose commutative analog is the Hermitian symmetric space D = SU(m, 1)/U(m), with the method of coherent state quantization. In the commutative limit, we obtain the standard manifold. We also consider a quantum field theory model on the noncommutative manifold.

- Authors:

- Dipartimento di Matematica, Università di Roma Tre Largo S. L. Murialdo 1, 00146 Roma (Italy)

- Publication Date:

- OSTI Identifier:
- 22306035

- Resource Type:
- Journal Article

- Journal Name:
- Journal of Mathematical Physics

- Additional Journal Information:
- Journal Volume: 55; Journal Issue: 9; Other Information: (c) 2014 AIP Publishing LLC; Country of input: International Atomic Energy Agency (IAEA); Journal ID: ISSN 0022-2488

- Country of Publication:
- United States

- Language:
- English

- Subject:
- 71 CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS; ANNIHILATION OPERATORS; COMMUTATION RELATIONS; EIGENSTATES; QUANTIZATION; QUANTUM FIELD THEORY; SYMMETRY GROUPS

### Citation Formats

```
Wang, Zhituo, E-mail: zhituo@mat.uniroma3.it.
```*Construction of the noncommutative complex ball*. United States: N. p., 2014.
Web. doi:10.1063/1.4895018.

```
Wang, Zhituo, E-mail: zhituo@mat.uniroma3.it.
```*Construction of the noncommutative complex ball*. United States. doi:10.1063/1.4895018.

```
Wang, Zhituo, E-mail: zhituo@mat.uniroma3.it. Mon .
"Construction of the noncommutative complex ball". United States. doi:10.1063/1.4895018.
```

```
@article{osti_22306035,
```

title = {Construction of the noncommutative complex ball},

author = {Wang, Zhituo, E-mail: zhituo@mat.uniroma3.it},

abstractNote = {We describe the construction of the noncommutative complex ball whose commutative analog is the Hermitian symmetric space D = SU(m, 1)/U(m), with the method of coherent state quantization. In the commutative limit, we obtain the standard manifold. We also consider a quantum field theory model on the noncommutative manifold.},

doi = {10.1063/1.4895018},

journal = {Journal of Mathematical Physics},

issn = {0022-2488},

number = 9,

volume = 55,

place = {United States},

year = {2014},

month = {9}

}

DOI: 10.1063/1.4895018

Other availability

Save to My Library

You must Sign In or Create an Account in order to save documents to your library.