skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Theoretical and numerical predictions of hypervelocity impact-generated plasma

Abstract

The hypervelocity impact generated plasmas (HVIGP) in thermodynamic non-equilibrium state were theoretically analyzed, and a physical model was presented to explore the relationship between plasma ionization degree and internal energy of the system by a group of equations including a chemical reaction equilibrium equation, a chemical reaction rate equation, and an energy conservation equation. A series of AUTODYN 3D (a widely used software in dynamic numerical simulations and developed by Century Dynamic Inc.) numerical simulations of the impacts of hypervelocity Al projectile on its targets at different incident angles were performed. The internal energy and the material density obtained from the numerical simulations were then used to calculate the ionization degree and the electron temperature. Based on a self-developed 2D smooth particle hydrodynamic (SPH) code and the theoretical model, the plasmas generated by 6 hypervelocity impacts were directly simulated and their total charges were calculated. The numerical results are in good agreements with the experimental results as well as the empirical formulas, demonstrating that the theoretical model is justified by the AUTODYN 3D and self-developed 2D SPH simulations and applicable to predict HVIGPs. The study is of significance for astrophysical and cosmonautic researches and safety.

Authors:
; ;  [1]
  1. State Key Laboratory of Explosion Science and Technology, Beijing Institute of Technology, Beijing 100081 (China)
Publication Date:
OSTI Identifier:
22303762
Resource Type:
Journal Article
Resource Relation:
Journal Name: Physics of Plasmas; Journal Volume: 21; Journal Issue: 8; Other Information: (c) 2014 AIP Publishing LLC; Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
70 PLASMA PHYSICS AND FUSION TECHNOLOGY; ASTROPHYSICS; CHEMICAL REACTIONS; COMPUTER CODES; COMPUTERIZED SIMULATION; ELECTRON TEMPERATURE; ENERGY CONSERVATION; EQUATIONS; EQUILIBRIUM; FORECASTING; IONIZATION; PLASMA; REACTION KINETICS

Citation Formats

Li, Jianqiao, Song, Weidong, E-mail: swdgh@bit.edu.cn, and Ning, Jianguo. Theoretical and numerical predictions of hypervelocity impact-generated plasma. United States: N. p., 2014. Web. doi:10.1063/1.4893310.
Li, Jianqiao, Song, Weidong, E-mail: swdgh@bit.edu.cn, & Ning, Jianguo. Theoretical and numerical predictions of hypervelocity impact-generated plasma. United States. doi:10.1063/1.4893310.
Li, Jianqiao, Song, Weidong, E-mail: swdgh@bit.edu.cn, and Ning, Jianguo. Fri . "Theoretical and numerical predictions of hypervelocity impact-generated plasma". United States. doi:10.1063/1.4893310.
@article{osti_22303762,
title = {Theoretical and numerical predictions of hypervelocity impact-generated plasma},
author = {Li, Jianqiao and Song, Weidong, E-mail: swdgh@bit.edu.cn and Ning, Jianguo},
abstractNote = {The hypervelocity impact generated plasmas (HVIGP) in thermodynamic non-equilibrium state were theoretically analyzed, and a physical model was presented to explore the relationship between plasma ionization degree and internal energy of the system by a group of equations including a chemical reaction equilibrium equation, a chemical reaction rate equation, and an energy conservation equation. A series of AUTODYN 3D (a widely used software in dynamic numerical simulations and developed by Century Dynamic Inc.) numerical simulations of the impacts of hypervelocity Al projectile on its targets at different incident angles were performed. The internal energy and the material density obtained from the numerical simulations were then used to calculate the ionization degree and the electron temperature. Based on a self-developed 2D smooth particle hydrodynamic (SPH) code and the theoretical model, the plasmas generated by 6 hypervelocity impacts were directly simulated and their total charges were calculated. The numerical results are in good agreements with the experimental results as well as the empirical formulas, demonstrating that the theoretical model is justified by the AUTODYN 3D and self-developed 2D SPH simulations and applicable to predict HVIGPs. The study is of significance for astrophysical and cosmonautic researches and safety.},
doi = {10.1063/1.4893310},
journal = {Physics of Plasmas},
number = 8,
volume = 21,
place = {United States},
year = {Fri Aug 15 00:00:00 EDT 2014},
month = {Fri Aug 15 00:00:00 EDT 2014}
}
  • The hypervelocity impact experiments of spherical LY12 aluminum projectile diameter of 6.4 mm on LY12 aluminum target thickness of 23 mm have been conducted using a two-stage light gas gun. The impact velocity of the projectile is 5.2, 5.7, and 6.3 km/s, respectively. The experimental results show that the plasma phase transition appears under the current experiment conditions, and the plasma expansion consists of accumulation, equilibrium, and attenuation. The plasma characteristic parameters decrease as the plasma expands outward and are proportional with the third power of the impact velocity, i.e., (T{sub e}, n{sub e}) ∝ v{sub p}{sup 3}. Based on the experimental results, a theoreticalmore » model on the plasma expansion is developed and the theoretical results are consistent with the experimental data.« less
  • A 3D Smoothed Particle Hydrodynamics code was developed to investigate plasma generation by considering a chemical reaction process in hypervelocity impacts of an aluminum projectile on an aluminum target. The chemical reaction process was described by the reaction rate based on the Arrhenius equation and used to calculate the plasma generation during the impact simulation. The predicted result was verified by empirical formulas and a new empirical formula was proposed based on the comparisons and analyses. The influence of the impact angle was discussed for different impact velocities. Then, the application of both the new and original empirical formulas formore » protection design from plasma generated by hypervelocity impact was discussed, which demonstrated that the code and model were useful in the prediction of hypervelocity impacts on spacecraft.« less
  • The characteristics of plasma generated by hypervelocity impact were studied through both theoretical analysis and numerical simulation. Based on thermodynamics and statistical physics, a thermal ionization model was proposed to explore the relationships of ionization degree and plasma conductivity to temperature with consideration of the velocity distribution law in the thermodynamic equilibrium state. In order to derive the temperature, internal energy, and density of the plasma generated by the impact for the above relationships, a 3-D model for the impact of an aluminum spherical projectile on an aluminum target was established and five cases with different impact angles were numericallymore » simulated. Then, the temperature calculated from the internal energy and the Thomas Fermi (TF) model, the internal energy and the density of the plasma were put into the function of the ionization degree to study the characteristics of plasma. Finally, based on the experimental data, a good agreement was obtained between the theoretical predictions and the experimental results, and the feasibility of this theoretical model was verified.« less
  • For describing hypervelocity impact (relative low-speed as related to space debris and much lower than travelling speed of meteoroids) phenomenon associated with plasma generation, a self-developed 3D code was advanced to numerically simulate projectiles impacting on a rigid wall. The numerical results were combined with a new ionization model which was developed in an early study to calculate the ionized materials during the impact. The calculated results of ionization were compared with the empirical formulas concluded by experiments in references and a good agreement was obtained. Then based on the reliable 3D numerical code, a series of impacts with differentmore » projectile configurations were simulated to investigate the influence of impact conditions on hypervelocity impact generated plasma. It was found that the form of empirical formula needed to be modified. A new empirical formula with a critical impact velocity was advanced to describe the velocity dependence of plasma generation and the parameters of the modified formula were ensured by the comparison between the numerical predictions and the empirical formulas. For different projectile configurations, the changes of plasma charges with time are different but the integrals of charges on time almost stayed in the same level.« less