skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Method for Implementing Subsurface Solid Derived Concentration Guideline Levels (DCGL) - 12331

Abstract

The U.S. Nuclear Regulatory Commission (NRC) and other federal agencies currently approve the Multi-Agency Radiation Site Survey and Investigation Manual (MARSSIM) as guidance for licensees who are conducting final radiological status surveys in support of decommissioning. MARSSIM provides a method to demonstrate compliance with the applicable regulation by comparing residual radioactivity in surface soils with derived concentration guideline levels (DCGLs), but specifically discounts its applicability to subsurface soils. Many sites and facilities undergoing decommissioning contain subsurface soils that are potentially impacted by radiological constituents. In the absence of specific guidance designed to address the derivation of subsurface soil DCGLs and compliance demonstration, decommissioning facilities have attempted to apply DCGLs and final status survey techniques designed specifically for surface soils to subsurface soils. The decision to apply surface soil limits and surface soil compliance metrics to subsurface soils typically results in significant over-excavation with associated cost escalation. MACTEC, Inc. has developed the overarching concepts and principles found in recent NRC decommissioning guidance in NUREG 1757 to establish a functional method to derive dose-based subsurface soil DCGLs. The subsurface soil method developed by MACTEC also establishes a rigorous set of criterion-based data evaluation metrics (with analogs to the MARSSIM methodology) that canmore » be used to demonstrate compliance with the developed subsurface soil DCGLs. The method establishes a continuum of volume factors that relate the size and depth of a volume of subsurface soil having elevated concentrations of residual radioactivity with its ability to produce dose. The method integrates the subsurface soil sampling regime with the derivation of the subsurface soil DCGL such that a self-regulating optimization is naturally sought by both the responsible party and regulator. This paper describes the concepts and basis used by MACTEC to develop the dose-based subsurface soil DCGL method. The paper will show how MACTEC's method can be used to demonstrate that higher concentrations of residual radioactivity in subsurface soils (as compared with surface soils) can meet the NRC's dose-based regulations. MACTEC's method has been used successfully to obtain the NRC's radiological release at a site with known radiological impacts to subsurface soils exceeding the surface soil DCGL, saving both time and cost. Having considered the current NRC guidance for consideration of residual radioactivity in subsurface soils during decommissioning, MACTEC has developed a technically based approach to the derivation of and demonstration of compliance with subsurface soil DCGLs for radionuclides. In fact, the process uses the already accepted concepts and metrics approved for surface soils as the foundation for deriving scaling factors used to calculate subsurface soil DCGLs that are at least equally protective of the decommissioning annual dose standard. Each of the elements identified for consideration in the current NRC guidance is addressed in this proposed method. Additionally, there is considerable conservatism built into the assumptions and techniques used to arrive at subsurface soil scaling factors and DCGLs. The degree of conservatism embodied in the approach used is such that risk managers and decision makers approving and using subsurface soil DCGLs derived in accordance with this method can be confident that the future exposures will be well below permissible and safe levels. The technical basis for the method can be applied to a broad variety of sites with residual radioactivity in subsurface soils. Given the costly nature of soil surveys, excavation, and disposal of soils as low-level radioactive waste, MACTEC's method for deriving and demonstrating compliance with subsurface soil DCGLs offers the possibility of significant cost savings over the traditional approach of applying surface soil DCGLs to subsurface soils. Furthermore, while yet untested, MACTEC believes that the concepts and methods embodied in this approach could readily be applied to other types of contamination found in subsurface soils. (author)« less

Authors:
 [1]
  1. MACTEC Development Corporation (United States)
Publication Date:
Research Org.:
WM Symposia, 1628 E. Southern Avenue, Suite 9-332, Tempe, AZ 85282 (United States)
OSTI Identifier:
22293598
Report Number(s):
INIS-US-14-WM-12331
TRN: US14V1254115122
Resource Type:
Conference
Resource Relation:
Conference: WM2012: Waste Management 2012 conference on improving the future in waste management, Phoenix, AZ (United States), 26 Feb - 1 Mar 2012; Other Information: Country of input: France; 7 refs.
Country of Publication:
United States
Language:
English
Subject:
12 MANAGEMENT OF RADIOACTIVE WASTES, AND NON-RADIOACTIVE WASTES FROM NUCLEAR FACILITIES; 54 ENVIRONMENTAL SCIENCES; CONCENTRATION RATIO; CONTAMINATION; DECOMMISSIONING; DOSES; HAZARDS; LOW-LEVEL RADIOACTIVE WASTES; RADIOACTIVITY; RADIOISOTOPES; SOILS; SOLIDS; SURFACES

Citation Formats

Lively, J.W. Method for Implementing Subsurface Solid Derived Concentration Guideline Levels (DCGL) - 12331. United States: N. p., 2012. Web.
Lively, J.W. Method for Implementing Subsurface Solid Derived Concentration Guideline Levels (DCGL) - 12331. United States.
Lively, J.W. Sun . "Method for Implementing Subsurface Solid Derived Concentration Guideline Levels (DCGL) - 12331". United States.
@article{osti_22293598,
title = {Method for Implementing Subsurface Solid Derived Concentration Guideline Levels (DCGL) - 12331},
author = {Lively, J.W.},
abstractNote = {The U.S. Nuclear Regulatory Commission (NRC) and other federal agencies currently approve the Multi-Agency Radiation Site Survey and Investigation Manual (MARSSIM) as guidance for licensees who are conducting final radiological status surveys in support of decommissioning. MARSSIM provides a method to demonstrate compliance with the applicable regulation by comparing residual radioactivity in surface soils with derived concentration guideline levels (DCGLs), but specifically discounts its applicability to subsurface soils. Many sites and facilities undergoing decommissioning contain subsurface soils that are potentially impacted by radiological constituents. In the absence of specific guidance designed to address the derivation of subsurface soil DCGLs and compliance demonstration, decommissioning facilities have attempted to apply DCGLs and final status survey techniques designed specifically for surface soils to subsurface soils. The decision to apply surface soil limits and surface soil compliance metrics to subsurface soils typically results in significant over-excavation with associated cost escalation. MACTEC, Inc. has developed the overarching concepts and principles found in recent NRC decommissioning guidance in NUREG 1757 to establish a functional method to derive dose-based subsurface soil DCGLs. The subsurface soil method developed by MACTEC also establishes a rigorous set of criterion-based data evaluation metrics (with analogs to the MARSSIM methodology) that can be used to demonstrate compliance with the developed subsurface soil DCGLs. The method establishes a continuum of volume factors that relate the size and depth of a volume of subsurface soil having elevated concentrations of residual radioactivity with its ability to produce dose. The method integrates the subsurface soil sampling regime with the derivation of the subsurface soil DCGL such that a self-regulating optimization is naturally sought by both the responsible party and regulator. This paper describes the concepts and basis used by MACTEC to develop the dose-based subsurface soil DCGL method. The paper will show how MACTEC's method can be used to demonstrate that higher concentrations of residual radioactivity in subsurface soils (as compared with surface soils) can meet the NRC's dose-based regulations. MACTEC's method has been used successfully to obtain the NRC's radiological release at a site with known radiological impacts to subsurface soils exceeding the surface soil DCGL, saving both time and cost. Having considered the current NRC guidance for consideration of residual radioactivity in subsurface soils during decommissioning, MACTEC has developed a technically based approach to the derivation of and demonstration of compliance with subsurface soil DCGLs for radionuclides. In fact, the process uses the already accepted concepts and metrics approved for surface soils as the foundation for deriving scaling factors used to calculate subsurface soil DCGLs that are at least equally protective of the decommissioning annual dose standard. Each of the elements identified for consideration in the current NRC guidance is addressed in this proposed method. Additionally, there is considerable conservatism built into the assumptions and techniques used to arrive at subsurface soil scaling factors and DCGLs. The degree of conservatism embodied in the approach used is such that risk managers and decision makers approving and using subsurface soil DCGLs derived in accordance with this method can be confident that the future exposures will be well below permissible and safe levels. The technical basis for the method can be applied to a broad variety of sites with residual radioactivity in subsurface soils. Given the costly nature of soil surveys, excavation, and disposal of soils as low-level radioactive waste, MACTEC's method for deriving and demonstrating compliance with subsurface soil DCGLs offers the possibility of significant cost savings over the traditional approach of applying surface soil DCGLs to subsurface soils. Furthermore, while yet untested, MACTEC believes that the concepts and methods embodied in this approach could readily be applied to other types of contamination found in subsurface soils. (author)},
doi = {},
journal = {},
number = ,
volume = ,
place = {United States},
year = {2012},
month = {7}
}

Conference:
Other availability
Please see Document Availability for additional information on obtaining the full-text document. Library patrons may search WorldCat to identify libraries that hold this conference proceeding.

Save / Share: