skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Ruthenium Behavior at Phase Separation of Borosilicate Glass-12259

Abstract

The Rokkasho reprocessing plant (RRP) located in Aomori, Japan, vitrifies high level waste (HLW) into a borosilicate glass. The HLW is generated from the reprocessing of spent fuel and contains ruthenium (Ru) and other platinum group metals (PGMs). Based on the recent consequences after a huge earthquake that occurred in Japan, a hypothetical blackout was postulated for the RRP to address additional safety analysis requirements. During a prolonged blackout, the borosilicate glass could phase separate due to cooling of the glass in the melter. The Ru present in the glass matrix could migrate into separate phases and impact the durability of the borosilicate glass. The durability of the glass is important for quality assurance and performance assessment of the vitrified HLW. A fundamental study was performed at an independent university to understand the impact of a prolonged blackout. Simulated HLW glasses were prepared for the RRP, and the Ru behavior in phase separated glasses was studied. The simulated HLW glasses contained nonradioactive elements and PGMs. The glass compositions were then altered to enhance the formation of the phase-separated glasses when subjected to thermal treatment at 700 deg. C for 24 hours. The synthesized simulated glasses contained 1.1 % Ru bymore » weight as ruthenium dioxide (RuO{sub 2}). A portion of the RuO{sub 2} formed needle-shaped crystals in the glass specimens. After the thermal treatment, the glass specimen had separated into two phases. One of the two phases was a B{sub 2}O{sub 3} rich phase, and the other phase was a SiO{sub 2} rich phase. The majority of the chemical species in the B{sub 2}O{sub 3} rich phase was leached away with the Material Characterization Center-3 (MCC-3) protocol standardized by the Pacific Northwest National Laboratory using an aqueous low-concentrated nitric acid solution, but the leaching of the Ru fraction was very limited; less than 1% of the original Ru content. The Ru leaching was much less than those of the other elements, and the needle-shaped crystals of RuO{sub 2} were observed in the B{sub 2}O{sub 3} rich phase in the specimen after the leaching test. Another experiment was performed using another glass specimen which had been prepared with the same frits, but used reagent RuO{sub 2} of granular shape at lower content (0.0073% by weight as RuO{sub 2}). The leached fractions of elements for the latter specimen increased to almost the same fraction (more than 10% of the original Ru content) as observed for boron and sodium, when the phase separated glass was leached using the MMC-3 protocol with non-acidic de-ionized water. Based on the results of this study, it was concluded that needle-shaped RuO{sub 2} crystals are contained in the B{sub 2}O{sub 3}-rich phase after phase separation of the borosilicate glass after a hypothetical blackout. The leaching fraction for the needle-shaped RuO{sub 2} present in the phase separated glass is much lower than those for boron or sodium. Ruthenium behavior has been studied for a hypothetical loss of cooling in the liquid fed ceramic melter for high level waste by taking into account the phase separation of borosilicate glass. The needle-shaped crystal of ruthenium dioxide after bi-nodal-type phase separation of the borosilicate glass at 700 deg. C migrated into the B{sub 2}O{sub 3} rich phase, but remained without dissolution by an acidic aqueous solution. Additionally, granular ruthenium dioxide can be a morphological form of ruthenium after bimodal-type phase separation of the vitrified high level waste with borosilicate glass media. After the phase separation of the borosilicate glass, the crystal shape of the ruthenium dioxide is either needle-shaped or granular, and the leachable fraction of ruthenium is relatively much lower than those of major components (boron and sodium) in the vitrified borosilicate glass. The fraction of leached ruthenium increased to almost the same fraction as observed for boron and sodium when the phase-separated glass was leached with ultrapure water. (authors)« less

Authors:
 [1];  [2]
  1. Graduate School of Engineering, Nagoya University, Nagoya, 463-8603 (Japan)
  2. EcoTopia Science Institute, Nagoya University, Nagoya, 463-8603 (Japan)
Publication Date:
Research Org.:
WM Symposia, 1628 E. Southern Avenue, Suite 9-332, Tempe, AZ 85282 (United States)
OSTI Identifier:
22293352
Report Number(s):
INIS-US-14-WM-12000
TRN: US14V1200114876
Resource Type:
Conference
Resource Relation:
Conference: WM2012: Waste Management 2012 conference on improving the future in waste management, Phoenix, AZ (United States), 26 Feb - 1 Mar 2012; Other Information: Country of input: France; 13 refs.
Country of Publication:
United States
Language:
English
Subject:
12 MANAGEMENT OF RADIOACTIVE WASTES, AND NON-RADIOACTIVE WASTES FROM NUCLEAR FACILITIES; 36 MATERIALS SCIENCE; 37 INORGANIC, ORGANIC, PHYSICAL AND ANALYTICAL CHEMISTRY; BORATES; BORON OXIDES; BOROSILICATE GLASS; CERAMIC MELTERS; CRYSTALS; HARDNESS; HEAT TREATMENTS; HIGH-LEVEL RADIOACTIVE WASTES; LEACHING; PLATINUM; QUALITY ASSURANCE; REPROCESSING; ROKKASHO REPROCESSING PLANT; RUTHENIUM; RUTHENIUM OXIDES; SAFETY ANALYSIS; SILICA; SIMULATION; SODIUM; SPENT FUELS

Citation Formats

Enokida, Youichi, and Sawada, Kayo. Ruthenium Behavior at Phase Separation of Borosilicate Glass-12259. United States: N. p., 2012. Web.
Enokida, Youichi, & Sawada, Kayo. Ruthenium Behavior at Phase Separation of Borosilicate Glass-12259. United States.
Enokida, Youichi, and Sawada, Kayo. Sun . "Ruthenium Behavior at Phase Separation of Borosilicate Glass-12259". United States.
@article{osti_22293352,
title = {Ruthenium Behavior at Phase Separation of Borosilicate Glass-12259},
author = {Enokida, Youichi and Sawada, Kayo},
abstractNote = {The Rokkasho reprocessing plant (RRP) located in Aomori, Japan, vitrifies high level waste (HLW) into a borosilicate glass. The HLW is generated from the reprocessing of spent fuel and contains ruthenium (Ru) and other platinum group metals (PGMs). Based on the recent consequences after a huge earthquake that occurred in Japan, a hypothetical blackout was postulated for the RRP to address additional safety analysis requirements. During a prolonged blackout, the borosilicate glass could phase separate due to cooling of the glass in the melter. The Ru present in the glass matrix could migrate into separate phases and impact the durability of the borosilicate glass. The durability of the glass is important for quality assurance and performance assessment of the vitrified HLW. A fundamental study was performed at an independent university to understand the impact of a prolonged blackout. Simulated HLW glasses were prepared for the RRP, and the Ru behavior in phase separated glasses was studied. The simulated HLW glasses contained nonradioactive elements and PGMs. The glass compositions were then altered to enhance the formation of the phase-separated glasses when subjected to thermal treatment at 700 deg. C for 24 hours. The synthesized simulated glasses contained 1.1 % Ru by weight as ruthenium dioxide (RuO{sub 2}). A portion of the RuO{sub 2} formed needle-shaped crystals in the glass specimens. After the thermal treatment, the glass specimen had separated into two phases. One of the two phases was a B{sub 2}O{sub 3} rich phase, and the other phase was a SiO{sub 2} rich phase. The majority of the chemical species in the B{sub 2}O{sub 3} rich phase was leached away with the Material Characterization Center-3 (MCC-3) protocol standardized by the Pacific Northwest National Laboratory using an aqueous low-concentrated nitric acid solution, but the leaching of the Ru fraction was very limited; less than 1% of the original Ru content. The Ru leaching was much less than those of the other elements, and the needle-shaped crystals of RuO{sub 2} were observed in the B{sub 2}O{sub 3} rich phase in the specimen after the leaching test. Another experiment was performed using another glass specimen which had been prepared with the same frits, but used reagent RuO{sub 2} of granular shape at lower content (0.0073% by weight as RuO{sub 2}). The leached fractions of elements for the latter specimen increased to almost the same fraction (more than 10% of the original Ru content) as observed for boron and sodium, when the phase separated glass was leached using the MMC-3 protocol with non-acidic de-ionized water. Based on the results of this study, it was concluded that needle-shaped RuO{sub 2} crystals are contained in the B{sub 2}O{sub 3}-rich phase after phase separation of the borosilicate glass after a hypothetical blackout. The leaching fraction for the needle-shaped RuO{sub 2} present in the phase separated glass is much lower than those for boron or sodium. Ruthenium behavior has been studied for a hypothetical loss of cooling in the liquid fed ceramic melter for high level waste by taking into account the phase separation of borosilicate glass. The needle-shaped crystal of ruthenium dioxide after bi-nodal-type phase separation of the borosilicate glass at 700 deg. C migrated into the B{sub 2}O{sub 3} rich phase, but remained without dissolution by an acidic aqueous solution. Additionally, granular ruthenium dioxide can be a morphological form of ruthenium after bimodal-type phase separation of the vitrified high level waste with borosilicate glass media. After the phase separation of the borosilicate glass, the crystal shape of the ruthenium dioxide is either needle-shaped or granular, and the leachable fraction of ruthenium is relatively much lower than those of major components (boron and sodium) in the vitrified borosilicate glass. The fraction of leached ruthenium increased to almost the same fraction as observed for boron and sodium when the phase-separated glass was leached with ultrapure water. (authors)},
doi = {},
journal = {},
number = ,
volume = ,
place = {United States},
year = {2012},
month = {7}
}

Conference:
Other availability
Please see Document Availability for additional information on obtaining the full-text document. Library patrons may search WorldCat to identify libraries that hold this conference proceeding.

Save / Share: