skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Low-loss waveguiding and detecting structure for surface plasmon polaritons

Journal Article · · Applied Physics Letters
DOI:https://doi.org/10.1063/1.4866792· OSTI ID:22293065
 [1]; ; ; ;  [1]
  1. Department of Electrical and Electronic Information Engineering, Toyohashi University of Technology, 1-1 Hibarigaoka, Tempaku-cho, Aichi 441-8580 (Japan)

A simple and low-loss metal/semiconductor surface plasmon polariton (SPP) device consisting of a SPP waveguide and a detector is studied theoretically and experimentally. We demonstrate a simple diffraction structure (a metal grating) where the SPP couples from the waveguide to the detector. The SPP can propagate without large losses at the air/Au interface, and this interface was used for SPP waveguiding. To convert the SPP into an electric signal using internal photoemission, the propagating SPP is coupled into the Au/Si interface by the diffraction structure. The propagation direction of the coupled SPP at the Au/Si interface depends on the slit pitch of the diffraction structure, and the direction can be controlled by adjusting the pitch. The slit pitch is also modeled using a diffraction grating equation, and the results show good agreement with those of simulations using the finite-difference time-domain method. When diffraction structures consisting of a multi-slit structure and a disk array are placed at the end of the waveguide, SPP coupling into the Au/Si interface is also observed. The photocurrents detected at the Au/Si interface are much larger when compared with that detected for the device without the diffraction structure (26 times for the multi-slit structure and 10 times for the disk array). From the polarization angle dependence of the detected photocurrent, we also confirmed that the photocurrent was caused by the SPP propagating at the air/Au interface.

OSTI ID:
22293065
Journal Information:
Applied Physics Letters, Vol. 104, Issue 8; Other Information: (c) 2014 AIP Publishing LLC; Country of input: International Atomic Energy Agency (IAEA); ISSN 0003-6951
Country of Publication:
United States
Language:
English