skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: High-temperature X-ray analysis of phase evolution in lithium ion conductor Li{sub 1.5}Al{sub 0.5}Ge{sub 1.5}(PO{sub 4}){sub 3}

Journal Article · · Materials Characterization

Series of Li{sub 1.5}Al{sub 0.5}Ge{sub 1.5}(PO{sub 4}){sub 3} glass ceramic samples were prepared in this work through the change of heat treatment temperature from 650 to 1050 °C. The structures of glass ceramic samples were characterized by means of high temperature X-ray diffraction and Field Emission Scanning Electron Microscope. And the lithium ionic conductivity was analyzed through AC impedance spectroscopy. Through heat treatment at 850 °C for 4 h for the base glass sample, we obtained a maximum conductivity of 5.8 × 10{sup −4} S/cm at room temperature. - Graphical Abstract: High temperature X-ray diffraction (HT-XRD) and Rietveld refinement of Li{sub 1.5}Al{sub 0.5}Ge{sub 1.5}(PO{sub 4}){sub 3} (LAGP) glass-ceramics were recorded to investigate the phase transformation, cell parameters and the mass fraction of each crystal phase, which occur in the glass to glass-ceramics process during different crystallization temperatures. The relationship between the average grain size and conductivity that originate from and relate to the crystallization temperature was analyzed by SEM micrograph and AC impedance spectroscopy. - Highlights: • Li{sub 1.5}Al{sub 0.5}Ge{sub 1.5}(PO{sub 4}){sub 3} glass-ceramics were prepared from as-prepared glass. • The phases decomposition and mass fraction of each phase were analyzed by HT-XRD. • Conductivity is relate to grain size that influenced by crystallization temperature.

OSTI ID:
22285051
Journal Information:
Materials Characterization, Vol. 80; Other Information: Copyright (c) 2013 Elsevier Science B.V., Amsterdam, The Netherlands, All rights reserved.; Country of input: International Atomic Energy Agency (IAEA); ISSN 1044-5803
Country of Publication:
United States
Language:
English