skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Intracavity quartz-enhanced photoacoustic sensor

Abstract

We report on a spectroscopic technique named intracavity quartz-enhanced photoacoustic spectroscopy (I-QEPAS) employed for sensitive trace-gas detection in the mid-infrared spectral region. It is based on a combination of QEPAS with a buildup optical cavity. The sensor includes a distributed feedback quantum cascade laser emitting at 4.33 μm. We achieved a laser optical power buildup factor of ∼500, which corresponds to an intracavity laser power of ∼0.75 W. CO{sub 2} has been selected as the target molecule for the I-QEPAS demonstration. We achieved a detection sensitivity of 300 parts per trillion for 4 s integration time, corresponding to a noise equivalent absorption coefficient of 1.4 × 10{sup −8} cm{sup −1} and a normalized noise-equivalent absorption of 3.2 × 10{sup −10} W cm{sup −1} Hz{sup −1/2}.

Authors:
; ; ;  [1]; ; ;  [2];  [3];  [4]
  1. CNR-INO UOS Sesto Fiorentino and LENS, via Carrara 1, 50019 Sesto Fiorentino FI (Italy)
  2. CNR-IFN UOS Bari and Dipartimento Interateneo di Fisica, Università degli Studi di Bari e Politecnico di Bari, via Amendola 173, 70126 Bari BA (Italy)
  3. Development Bureau Laser Device R and D Group, Hamamatsu Photonics KK, Shizuoka 434-8601 (Japan)
  4. Central Research Laboratories, Hamamatsu Photonics KK, Shizuoka 434-8601 (Japan)
Publication Date:
OSTI Identifier:
22283061
Resource Type:
Journal Article
Journal Name:
Applied Physics Letters
Additional Journal Information:
Journal Volume: 104; Journal Issue: 9; Other Information: (c) 2014 AIP Publishing LLC; Country of input: International Atomic Energy Agency (IAEA); Journal ID: ISSN 0003-6951
Country of Publication:
United States
Language:
English
Subject:
75 CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY; 37 INORGANIC, ORGANIC, PHYSICAL AND ANALYTICAL CHEMISTRY; ABSORPTION; CARBON DIOXIDE; DETECTION; LASER RADIATION; MOLECULES; NOISE; PHOTOACOUSTIC SPECTROSCOPY; QUARTZ; SENSITIVITY; SENSORS; SOLID STATE LASERS

Citation Formats

Borri, S., E-mail: simone.borri@ino.it, Galli, I., Mazzotti, D., Giusfredi, G., De Natale, P., Patimisco, P., Scamarcio, G., Spagnolo, V., Akikusa, N., and Yamanishi, M. Intracavity quartz-enhanced photoacoustic sensor. United States: N. p., 2014. Web. doi:10.1063/1.4867268.
Borri, S., E-mail: simone.borri@ino.it, Galli, I., Mazzotti, D., Giusfredi, G., De Natale, P., Patimisco, P., Scamarcio, G., Spagnolo, V., Akikusa, N., & Yamanishi, M. Intracavity quartz-enhanced photoacoustic sensor. United States. https://doi.org/10.1063/1.4867268
Borri, S., E-mail: simone.borri@ino.it, Galli, I., Mazzotti, D., Giusfredi, G., De Natale, P., Patimisco, P., Scamarcio, G., Spagnolo, V., Akikusa, N., and Yamanishi, M. 2014. "Intracavity quartz-enhanced photoacoustic sensor". United States. https://doi.org/10.1063/1.4867268.
@article{osti_22283061,
title = {Intracavity quartz-enhanced photoacoustic sensor},
author = {Borri, S., E-mail: simone.borri@ino.it and Galli, I. and Mazzotti, D. and Giusfredi, G. and De Natale, P. and Patimisco, P. and Scamarcio, G. and Spagnolo, V. and Akikusa, N. and Yamanishi, M.},
abstractNote = {We report on a spectroscopic technique named intracavity quartz-enhanced photoacoustic spectroscopy (I-QEPAS) employed for sensitive trace-gas detection in the mid-infrared spectral region. It is based on a combination of QEPAS with a buildup optical cavity. The sensor includes a distributed feedback quantum cascade laser emitting at 4.33 μm. We achieved a laser optical power buildup factor of ∼500, which corresponds to an intracavity laser power of ∼0.75 W. CO{sub 2} has been selected as the target molecule for the I-QEPAS demonstration. We achieved a detection sensitivity of 300 parts per trillion for 4 s integration time, corresponding to a noise equivalent absorption coefficient of 1.4 × 10{sup −8} cm{sup −1} and a normalized noise-equivalent absorption of 3.2 × 10{sup −10} W cm{sup −1} Hz{sup −1/2}.},
doi = {10.1063/1.4867268},
url = {https://www.osti.gov/biblio/22283061}, journal = {Applied Physics Letters},
issn = {0003-6951},
number = 9,
volume = 104,
place = {United States},
year = {2014},
month = {3}
}