skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: The layered antimonides RELi{sub 3}Sb{sub 2} (RE=Ce–Nd, Sm, Gd–Ho). Filled derivatives of the CaAl{sub 2}Si{sub 2} structure type

Journal Article · · Journal of Solid State Chemistry

Reported are the synthesis and the structural characterization of an extended family of rare-earth metal–lithium–antimonides with the formula RELi{sub 3}Sb{sub 2} (RE=Ce–Nd, Sm, Gd–Ho). They crystallize in the trigonal space group P3{sup ¯}m1 (No. 164, Pearson symbol hP6) with a structure, best viewed as a filled derivative of the common CaAl{sub 2}Si{sub 2} structure type (ternary variant of α-La{sub 2}O{sub 3}). Across the series, the lattice parameters monotonically decrease, following the lanthanide contraction. Temperature-dependent magnetic susceptibility measurements for CeLi{sub 3}Sb{sub 2}, PrLi{sub 3}Sb{sub 2} and TbLi{sub 3}Sb{sub 2} reveal paramagnetic behavior in the high temperature range, and the obtained effective moments are consistent with the expected ones for the free-ion RE{sup 3+} ground state. Possible ferromagnetic ordering for PrLi{sub 3}Sb{sub 2} and antiferromagnetic ordering for TbLi{sub 3}Sb{sub 2} are observed in the low temperature range (below 20 K). Tight-binding muffin-tin orbital electronic band structure calculations for LaLi{sub 3}Sb{sub 2} are presented and discussed as well. - Graphical abstract: The large family of rare-earth metal–lithium–antimonides with the formula RELi{sub 3}Sb{sub 2} (RE=Ce–Nd, Sm, Gd–Ho) crystallize in the trigonal space group P3{sup ¯}m1 (No. 164, Pearson symbol hP6) with a structure that is a filled derivative of the CaAl{sub 2}Si{sub 2} structure type (ternary variant of α-La{sub 2}O{sub 3}). Display Omitted - Highlights: • RELi{sub 3}Sb{sub 2} (RE=Ce–Nd, Sm, Gd–Ho) constitute an extended family of rare-earth metal–lithium–antimonides. • The layered structure is a filled derivative of the common CaAl{sub 2}Si{sub 2} structure type. • The valence electron count follows the Zintl–Klemm rules. • Electronic band structure calculations for LaLi{sub 3}Sb{sub 2} indicate small band-gap semiconducting behavior.

OSTI ID:
22274198
Journal Information:
Journal of Solid State Chemistry, Vol. 210, Issue 1; Other Information: Copyright (c) 2013 Elsevier Science B.V., Amsterdam, The Netherlands, All rights reserved.; Country of input: International Atomic Energy Agency (IAEA); ISSN 0022-4596
Country of Publication:
United States
Language:
English