skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: SS 383: A NEW S-TYPE YELLOW SYMBIOTIC STAR?

Abstract

Symbiotic stars are key objects in understanding the formation and evolution of interacting binary systems, and are probably the progenitors of Type Ia supernovae. However, the number of known symbiotic stars is much lower than predicted. We aim to search for new symbiotic stars, with particular emphasis on the S-type yellow symbiotic stars, in order to determine their total population, evolutionary timescales, and physical properties. The Two Micron All Sky Survey (2MASS) (J – H) versus (H – K {sub s}) color-color diagram has been previously used to identify new symbiotic star candidates and show that yellow symbiotics are located in a particular region of that diagram. Candidate symbiotic stars are selected on the basis of their locus in the 2MASS (J – H) versus (H – K {sub s}) diagram and the presence of Hα line emission in the Stephenson and Sanduleak Hα survey. This diagram separates S-type yellow symbiotic stars from the rest of the S-type symbiotic stars, allowing us to select candidate yellow symbiotics. To establish the true nature of the candidates, intermediate-resolution spectroscopy is obtained. We have identified the Hα emission line source SS 383 as an S-type yellow symbiotic candidate by its position in themore » 2MASS color-color diagram. The optical spectrum of SS 383 shows Balmer, He I, He II, and [O III] emission lines, in combination with TiO absorption bands that confirm its symbiotic nature. The derived electron density (≅10{sup 8-9} cm{sup –3}), He I emission line intensity ratios, and position in the [O III] λ5007/Hβ versus [O III] λ4363/Hγ diagram indicate that SS 383 is an S-type symbiotic star, with a probable spectral type of K7-M0 deduced for its cool component based on TiO indices. The spectral type and the position of SS 383 (corrected for reddening) in the 2MASS color-color diagram strongly suggest that SS 383 is an S-type yellow symbiotic. Our result points out that the 2MASS color-color diagram is a powerful tool in identifying new S-type yellow symbiotics.« less

Authors:
;  [1];  [2]
  1. Observatório Nacional, Rua José Cristino 77, CEP 20921-400, São Cristóvão, Rio de Janeiro (Brazil)
  2. Departamento de Física Aplicada, Facultad de Ciencias, Universidad de Vigo, E-36310 Vigo (Spain)
Publication Date:
OSTI Identifier:
22273315
Resource Type:
Journal Article
Resource Relation:
Journal Name: Astronomical Journal (New York, N.Y. Online); Journal Volume: 146; Journal Issue: 5; Other Information: Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
79 ASTROPHYSICS, COSMOLOGY AND ASTRONOMY; ABSORPTION SPECTRA; ASTRONOMY; ASTROPHYSICS; BALMER LINES; BINARY STARS; COLOR; ELECTRON DENSITY; HELIUM IONS; OXYGEN IONS; RESOLUTION; SUPERNOVAE; SYMBIOTIC STARS; TITANIUM OXIDES

Citation Formats

Baella, N. O., Pereira, C. B., and Miranda, L. F.. SS 383: A NEW S-TYPE YELLOW SYMBIOTIC STAR?. United States: N. p., 2013. Web. doi:10.1088/0004-6256/146/5/115.
Baella, N. O., Pereira, C. B., & Miranda, L. F.. SS 383: A NEW S-TYPE YELLOW SYMBIOTIC STAR?. United States. doi:10.1088/0004-6256/146/5/115.
Baella, N. O., Pereira, C. B., and Miranda, L. F.. 2013. "SS 383: A NEW S-TYPE YELLOW SYMBIOTIC STAR?". United States. doi:10.1088/0004-6256/146/5/115.
@article{osti_22273315,
title = {SS 383: A NEW S-TYPE YELLOW SYMBIOTIC STAR?},
author = {Baella, N. O. and Pereira, C. B. and Miranda, L. F.},
abstractNote = {Symbiotic stars are key objects in understanding the formation and evolution of interacting binary systems, and are probably the progenitors of Type Ia supernovae. However, the number of known symbiotic stars is much lower than predicted. We aim to search for new symbiotic stars, with particular emphasis on the S-type yellow symbiotic stars, in order to determine their total population, evolutionary timescales, and physical properties. The Two Micron All Sky Survey (2MASS) (J – H) versus (H – K {sub s}) color-color diagram has been previously used to identify new symbiotic star candidates and show that yellow symbiotics are located in a particular region of that diagram. Candidate symbiotic stars are selected on the basis of their locus in the 2MASS (J – H) versus (H – K {sub s}) diagram and the presence of Hα line emission in the Stephenson and Sanduleak Hα survey. This diagram separates S-type yellow symbiotic stars from the rest of the S-type symbiotic stars, allowing us to select candidate yellow symbiotics. To establish the true nature of the candidates, intermediate-resolution spectroscopy is obtained. We have identified the Hα emission line source SS 383 as an S-type yellow symbiotic candidate by its position in the 2MASS color-color diagram. The optical spectrum of SS 383 shows Balmer, He I, He II, and [O III] emission lines, in combination with TiO absorption bands that confirm its symbiotic nature. The derived electron density (≅10{sup 8-9} cm{sup –3}), He I emission line intensity ratios, and position in the [O III] λ5007/Hβ versus [O III] λ4363/Hγ diagram indicate that SS 383 is an S-type symbiotic star, with a probable spectral type of K7-M0 deduced for its cool component based on TiO indices. The spectral type and the position of SS 383 (corrected for reddening) in the 2MASS color-color diagram strongly suggest that SS 383 is an S-type yellow symbiotic. Our result points out that the 2MASS color-color diagram is a powerful tool in identifying new S-type yellow symbiotics.},
doi = {10.1088/0004-6256/146/5/115},
journal = {Astronomical Journal (New York, N.Y. Online)},
number = 5,
volume = 146,
place = {United States},
year = 2013,
month =
}
  • Yellow symbiotic stars are useful targets for probing whether mass transfer has happened in their binary systems. However, the number of known yellow symbiotic stars is very scarce. We report spectroscopic observations of five candidate yellow symbiotic stars that were selected by their positions in the 2MASS (J − H) versus (H − K{sub s}) diagram and which were included in some emission-line catalogs. Among the five candidates, only StHα63 is identified as a new yellow symbiotic star because of its spectrum and its position in the [TiO]{sub 1}–[TiO]{sub 2} diagram, which indicates a K4–K6 spectral type. In addition, themore » derived electron density (∼10{sup 8.4} cm{sup −3}) and several emission-line intensity ratios provide further support for that classification. The other four candidates are rejected as symbiotic stars because three of them actually do not show emission lines and the fourth one only Balmer emission lines. We also found that the WISE W3–W4 index clearly separates normal K-giants from yellow symbiotic stars and therefore can be used as an additional tool for selecting candidate yellow symbiotic stars.« less
  • Time-series spectra of the near-infrared 1.6 {mu}m region have been obtained for five of the six known D-type symbiotic novae. The spectra map the pulsation kinematics of the Mira component in the Mira-white dwarf binary system and provide the center-of-mass velocity for the Mira. No orbital motion is detected in agreement with previous estimates of orbital periods {approx}>100 yr and semimajor axes {approx}50 AU. The 1-5 {mu}m spectra of the Miras show line weakening during dust obscuration events. This results from scattering and continuum emission by 1000 K dust. In the heavily obscured HM Sge system the 4.6 {mu}m COmore » spectrum formed in 1000 K gas is seen in emission against an optically thick dust continuum. Spectral features that are typically produced in either the cool molecular region or the expanding circumstellar region of late-type stars cannot be detected in the D-symbiotic novae. This is in accord with the colliding wind model for interaction between the white dwarf and Mira. Arguments are presented that the 1000 K gas and dust are not Mira circumstellar material but are in the wind interaction region of the colliding winds. CO is the first molecule detected in this region. We suggest that dust condensing in the intershock region is the origin of the dust obscuration. This model explains variations in the obscuration. Toward the highly obscured Mira in HM Sge the dust zone is estimated to be {approx}0.1 AU thick. The intershock wind interaction zone appears thinnest in the most active systems. Drawing on multiple arguments masses are estimated for the system components. The Miras in most D-symbiotic novae have descended from intermediate mass progenitors. The large amount of mass lost from the Mira combined with the massive white dwarf companion suggests that these systems are supernova candidates. However, timescales and the number of objects make these rare events.« less
  • Measurements of the radial velocity of the underlying M giant absorption spectrum in AG Peg reveal a small-amplitude variation with P = 830.14 days. The emission lines of this symbiotic star are found to vary in antiphase with the absorptions and probably arise mainly around the hot secondary star. Variations in the number of emission lines and the strength of the M star may be due to partial occultations of each component by the other. Gas streaming distorts the emission velocity, so it is difficult to determine the exact mass ratio. It is shown that if the M giant ismore » not more massive than 6 M/sub sub solar /, then the mass of the emission object falls between 1 and 1.5 M/sub sub solar /. (auth)« less