skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Optical microcavities and enhanced electroluminescence from electroformed Al-Al{sub 2}O{sub 3}-Ag diodes

Journal Article · · Journal of Applied Physics
DOI:https://doi.org/10.1063/1.4848099· OSTI ID:22266194
 [1]
  1. Department of Physics, State University of New York at Albany, Albany, New York 12222 (United States)

Electroluminescence (EL) and electron emission into vacuum (EM) occur when a non-destructive dielectric breakdown of Al-Al{sub 2}O{sub 3}-Ag diodes, electroforming, results in the development of a filamentary region in which current-voltage (I-V) characteristics exhibit voltage-controlled negative resistance. The temperature dependence of I-V curves, EM, and, particularly, EL of Al-Al{sub 2}O{sub 3}-Ag diodes with anodic Al{sub 2}O{sub 3} thicknesses between 12 nm and 30 nm, has been studied. Two filters, a long-pass (LP) filter with transmission of photons with energies less than 3.0 eV and a short-pass (SP) filter with photon transmission between 3.0 and 4.0 eV, have been used to characterize EL. The voltage threshold for EL with the LP filter, V{sub LP}, is ∼1.5 V. V{sub LP} is nearly independent of Al{sub 2}O{sub 3} thickness and of temperature and is 0.3–0.6 V less than the threshold voltage for EL for the SP filter, V{sub SP}. EL intensity is primarily between 1.8 and 3.0 eV when the bias voltage, V{sub S} ≲ 7 V. EL in the thinnest diodes is enhanced compared to EL in thicker diodes. For increasing V{sub S}, for diodes with the smallest Al{sub 2}O{sub 3} thicknesses, there is a maximum EL intensity, L{sub MX}, at a voltage, V{sub LMX}, followed by a decrease to a plateau. L{sub MX} and EL intensity at 4.0 V in the plateau region depend exponentially on Al{sub 2}O{sub 3} thickness. The ratio of L{sub MX} at 295 K for a diode with 12 nm of Al{sub 2}O{sub 3} to L{sub MX} for a diode with 25 nm of Al{sub 2}O{sub 3} is ∼140. The ratio of EL intensity with the LP filter to EL intensity with the SP filter, LP/SP, varies between ∼3 and ∼35; it depends on Al{sub 2}O{sub 3} thickness and V{sub S}. Enhanced EL is attributed to the increase of the spontaneous emission rate of a dipole in a non-resonant optical microcavity. EL photons interact with the Ag and Al films to create surface plasmon polaritons (SPPs) at the metal-Al{sub 2}O{sub 3} interfaces. SPPs generate large electromagnetic fields in the filamentary region of the electroformed Al-Al{sub 2}O{sub 3}-Ag diode, which then acts as an optical microcavity. A model is proposed for electronic processes in electroformed Al-Al{sub 2}O{sub 3}-Ag diodes.

OSTI ID:
22266194
Journal Information:
Journal of Applied Physics, Vol. 114, Issue 23; Other Information: (c) 2013 AIP Publishing LLC; Country of input: International Atomic Energy Agency (IAEA); ISSN 0021-8979
Country of Publication:
United States
Language:
English