skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Roadmap for development of an advanced head-end reactor

Abstract

A novel dry treatment process for used nuclear fuel (UNF) using nitrogen dioxide is being developed to remove volatile and semi-volatile fission products and convert the monolithic fuel material to a fine powder suitable as a feed to many different separations processes. The process may be considered an advanced form of voloxidation, which was envisioned to remove tritium from the fuel prior to introduction of the fuel into the aqueous separations systems, where subsequent separation of tritium from the water would be difficult and expensive. The product from NO{sub 2} reaction can be selectively chosen to be U{sub 3}O{sub 8}, UO{sub 3}, or a nitrate by adjusting the processing conditions; all products are generated at temperatures lower than those used in standard voloxidation. All the fundamental tenants of the process have been successfully demonstrated as a proof of principle, and many aspects have been corroborated multiple times at laboratory scale. The goal of this roadmap is to define the activities required to develop the process to a technology-readiness level sufficient to an engineering-scale implementation. (authors)

Authors:
; ; ;  [1]
  1. Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831-6243 (United States)
Publication Date:
Research Org.:
American Nuclear Society, 555 North Kensington Avenue, La Grange Park, IL 60526 (United States)
OSTI Identifier:
22264123
Resource Type:
Conference
Resource Relation:
Conference: GLOBAL 2013: International Nuclear Fuel Cycle Conference - Nuclear Energy at a Crossroads, Salt Lake City, UT (United States), 29 Sep - 3 Oct 2013; Other Information: Country of input: France; 2 refs.; Related Information: In: Proceedings of GLOBAL 2013: International Nuclear Fuel Cycle Conference - Nuclear Energy at a Crossroads| 1633 p.
Country of Publication:
United States
Language:
English
Subject:
11 NUCLEAR FUEL CYCLE AND FUEL MATERIALS; ENGINEERING; FISSION PRODUCTS; NITRATES; NITROGEN DIOXIDE; NUCLEAR FUELS; SEPARATION PROCESSES; TRITIUM; URANIUM OXIDES U3O8; URANIUM TRIOXIDE; VOLATILITY

Citation Formats

Del Cul, G.D., Johnson, J.A., Spencer, B.B., and Collins, E.D. Roadmap for development of an advanced head-end reactor. United States: N. p., 2013. Web.
Del Cul, G.D., Johnson, J.A., Spencer, B.B., & Collins, E.D. Roadmap for development of an advanced head-end reactor. United States.
Del Cul, G.D., Johnson, J.A., Spencer, B.B., and Collins, E.D. 2013. "Roadmap for development of an advanced head-end reactor". United States. doi:.
@article{osti_22264123,
title = {Roadmap for development of an advanced head-end reactor},
author = {Del Cul, G.D. and Johnson, J.A. and Spencer, B.B. and Collins, E.D.},
abstractNote = {A novel dry treatment process for used nuclear fuel (UNF) using nitrogen dioxide is being developed to remove volatile and semi-volatile fission products and convert the monolithic fuel material to a fine powder suitable as a feed to many different separations processes. The process may be considered an advanced form of voloxidation, which was envisioned to remove tritium from the fuel prior to introduction of the fuel into the aqueous separations systems, where subsequent separation of tritium from the water would be difficult and expensive. The product from NO{sub 2} reaction can be selectively chosen to be U{sub 3}O{sub 8}, UO{sub 3}, or a nitrate by adjusting the processing conditions; all products are generated at temperatures lower than those used in standard voloxidation. All the fundamental tenants of the process have been successfully demonstrated as a proof of principle, and many aspects have been corroborated multiple times at laboratory scale. The goal of this roadmap is to define the activities required to develop the process to a technology-readiness level sufficient to an engineering-scale implementation. (authors)},
doi = {},
journal = {},
number = ,
volume = ,
place = {United States},
year = 2013,
month = 7
}

Conference:
Other availability
Please see Document Availability for additional information on obtaining the full-text document. Library patrons may search WorldCat to identify libraries that hold this conference proceeding.

Save / Share:
  • Fluoride salt-cooled high-temperature reactors (FHRs) are an emerging reactor class with potentially advantageous performance characteristics and fully passive safety. This paper provides an overview of a technology development pathway for expeditious commercial deployment of first-generation FHRs. The paper describes the principal remaining FHR technology challenges and the development path needed to address the challenges. First-generation FHRs do not appear to require any technology breakthroughs, but will require significant technology development and demonstration. FHRs are currently entering early phase engineering development. As such, the development roadmap is not as technically detailed or specific as would be the case for a moremore » mature reactor class. The higher cost of fuel and coolant; the lack of an approved licensing framework; the lack of qualified, salt-compatible structural materials; and the potential for tritium release into the environment are the most obvious issues that remain to be resolved.« less
  • This Technology Development Roadmap (TDRM) presents the path forward for deploying large-scale molten salt secondary heat exchangers (MS-SHX) and recognizing the benefits of using molten salt as the heat transport medium for advanced high temperature reactors (AHTR). This TDRM will aid in the development and selection of the required heat exchanger for: power production (the first anticipated process heat application), hydrogen production, steam methane reforming, methanol to gasoline production, or ammonia production. This TDRM (a) establishes the current state of molten salt SHX technology readiness, (b) defines a path forward that systematically and effectively tests this technology to overcome areasmore » of uncertainty, (c) demonstrates the achievement of an appropriate level of maturity prior to construction and plant operation, and (d) identifies issues and prioritizes future work for maturing the state of SHX technology. This study discusses the results of a preliminary design analysis of the SHX and explains the evaluation and selection methodology. An important engineering challenge will be to prevent the molten salt from freezing during normal and off-normal operations because of its high melting temperature (390°C for KF ZrF4). The efficient transfer of energy for industrial applications depends on the ability to incorporate cost-effective heat exchangers between the nuclear heat transport system and industrial process heat transport system. The need for efficiency, compactness, and safety challenge the capabilities of existing heat exchanger technology. The description of potential heat exchanger configurations or designs (such as printed circuit, spiral or helical coiled, ceramic, plate and fin, and plate type) were covered in an earlier report (Sabharwall et al. 2011). Significant future work, much of which is suggested in this report, is needed before the benefits and full potential of the AHTR can be realized. The execution of this TDRM will focuses research efforts on the near-term qualification, selection, or maturation strategy as detailed in this report. Development of the integration methodology feasibility study, along with research and development (R&D) needs, are ongoing tasks that will be covered in the future reports as work progresses. Section 2 briefly presents the integration of AHTR technology with conventional chemical industrial processes., See Idaho National Laboratory (INL) TEV-1160 (2011) for further details« less
  • This three-volume report contains papers presented at the Twentieth Water Reactor Safety Information Meeting held at the Bethesda Marriott Hotel, Bethesda, Maryland, during the week of October 21--23, 1992. The papers describes progress and results of programs in nuclear safety research conducted in this country and abroad. Foreign participation in the meeting included 10 different papers presented by researchers from CEC, China, Finland, France, Germany, Japan, Spain and Taiwan. This document, Volume 1, presents, papers on: Advanced Reactor Research; Advanced passive LWR`s; advanced instrumentation and control hardware, advanced control system technology; human factors research; and EPRI`s nuclear safety research andmore » development. The individual papers have been cataloged separately.« less
  • Japan Atomic Energy Agency (JAEA) has been developing the new aqueous reprocessing system named 'NEXT' (New Extraction system for TRU recovery)1-2, which provides many advantages as waste volume reduction, cost savings by advanced components and simplification of process operation. Advanced head-end systems in the 'NEXT' process consist of fuel disassembly system, fuel shearing system and continuous dissolver system. We developed reliable fuel disassembly system with innovative procedure, and short-length shearing system and continuous dissolver system can be provided highly concentrated dissolution to adapt to the uranium crystallization process. We have carried out experimental studies, and fabrication of engineering-scale test devicesmore » to confirm the systems performance. In this paper, research and development of advanced head-end systems are described. (authors)« less