skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Simulation of computed radiography with imaging plate detectors

Abstract

Computed radiography (CR) using phosphor imaging plate detectors is taking an increasing place in Radiography Testing. CR uses similar equipment as conventional radiography except that the classical X-ray film is replaced by a numerical detector, called image plate (IP), which is made of a photostimulable layer and which is read by a scanning device through photostimulated luminescence. Such digital radiography has already demonstrated important benefits in terms of exposure time, decrease of source energies and thus reduction of radioprotection area besides being a solution without effluents. This paper presents a model for the simulation of radiography with image plate detectors in CIVA together with examples of validation of the model. The study consists in a cross comparison between experimental and simulation results obtained on a step wedge with a classical X-ray tube. Results are proposed in particular with wire Image quality Indicator (IQI) and duplex IQI.

Authors:
;  [1];  [2];  [3]
  1. CEA LIST, CEA Saclay 91191 Gif sur Yvette Cedex (France)
  2. CEA-LETI, Campus Minatec, F-38054, Grenoble (France)
  3. EDF R and D, 1 avenue du général de gaulle 92141 Clamart (France)
Publication Date:
OSTI Identifier:
22263777
Resource Type:
Journal Article
Resource Relation:
Journal Name: AIP Conference Proceedings; Journal Volume: 1581; Journal Issue: 1; Conference: 40. annual review of progress in quantitative nondestructive evaluation, Baltimore, MD (United States), 21-26 Jul 2013, 10. international conference on Barkhausen noise and micromagnetic testing, Baltimore, MD (United States), 21-26 Jul 2013; Other Information: (c) 2014 AIP Publishing LLC; Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
71 CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS; COMPUTERIZED TOMOGRAPHY; FILMS; IMAGES; PHOTOLUMINESCENCE; SIMULATION; VALIDATION; X RADIATION; X-RAY TUBES

Citation Formats

Tisseur, D., Costin, M., Mathy, F., and Schumm, A. Simulation of computed radiography with imaging plate detectors. United States: N. p., 2014. Web. doi:10.1063/1.4865050.
Tisseur, D., Costin, M., Mathy, F., & Schumm, A. Simulation of computed radiography with imaging plate detectors. United States. doi:10.1063/1.4865050.
Tisseur, D., Costin, M., Mathy, F., and Schumm, A. 2014. "Simulation of computed radiography with imaging plate detectors". United States. doi:10.1063/1.4865050.
@article{osti_22263777,
title = {Simulation of computed radiography with imaging plate detectors},
author = {Tisseur, D. and Costin, M. and Mathy, F. and Schumm, A.},
abstractNote = {Computed radiography (CR) using phosphor imaging plate detectors is taking an increasing place in Radiography Testing. CR uses similar equipment as conventional radiography except that the classical X-ray film is replaced by a numerical detector, called image plate (IP), which is made of a photostimulable layer and which is read by a scanning device through photostimulated luminescence. Such digital radiography has already demonstrated important benefits in terms of exposure time, decrease of source energies and thus reduction of radioprotection area besides being a solution without effluents. This paper presents a model for the simulation of radiography with image plate detectors in CIVA together with examples of validation of the model. The study consists in a cross comparison between experimental and simulation results obtained on a step wedge with a classical X-ray tube. Results are proposed in particular with wire Image quality Indicator (IQI) and duplex IQI.},
doi = {10.1063/1.4865050},
journal = {AIP Conference Proceedings},
number = 1,
volume = 1581,
place = {United States},
year = 2014,
month = 2
}
  • The presently active standards on Computed Radiography (CR) need a major revision. It was observed by many users that the image quality for class B of EN 14784-2 is not achievable under the same exposure conditions as used for film exposure. A mathematical model was developed and tested, which allows the calculation of the image quality, proven by image quality indicators (IQI), depending on the fixed pattern noise and the efficiency of the used imaging plate (IP) scanner system. All tested IP scanner systems provide a fixed correlation between the measured signal/noise ratio (SNR) and the grey values in themore » digital images. The maximum achievable SNR{sub max} depends on the fixed pattern noise of the plate (high dose limit). Depending on the exposure dose an optimum visibility of IQIs can be predicted by calculation and measured considering the attenuation coefficient for calculation of the contrast/noise ratio (CNR). The diameter of the just visible wire is proportional to 1/sqrt(CNR). The optimum tube voltage for best visibility of IQIs and maximum CNR depend on the exposure dose. The optimum tube voltage for best visibility is achieved only at exposures with high dose. A dose dependant optimal tube voltage was not observed for film radiography.« less
  • Purpose: The purpose of this study is to develop a computer model to simulate the image acquisition for two computed radiography (CR) imaging systems used for neonatal chest imaging: (1) The Agfa ADC Compact, a flying spot reader with powder phosphor image plates (MD 40.0); and (2) the Agfa DX-S, a line-scanning CR reader with needle crystal phosphor image plates (HD 5.0). The model was then applied to compare the image quality of the two CR imaging systems. Methods: Monte Carlo techniques were used to simulate the transport of primary and scattered x rays in digital x-ray systems. The outputmore » of the Monte Carlo program was an image representing the energy absorbed in the detector material. This image was then modified using physical characteristics of the CR imaging systems to account for the signal intensity variations due to the heel effect along the anode-cathode axis, the spatial resolution characteristics of the imaging system, and the various sources of image noise. The simulation was performed for typical acquisition parameters of neonatal chest x-ray examinations. To evaluate the computer model, the authors compared the threshold-contrast detectability in simulated and experimentally acquired images of a contrast-detail phantom. Threshold-contrast curves were computed using a commercially available scoring program. Results: The threshold-contrast curves of the simulated and experimentally acquired images show good agreement; for the two CR systems, 93% of the threshold diameters calculated from the simulated images fell within the confidence intervals of the threshold diameter calculated from the experimentally assessed images. Moreover, the superiority of needle based CR plates for neonatal imaging was confirmed. Conclusions: The good agreement between simulated and experimental acquired results indicates that the computer model is accurate.« less
  • In this paper, a fluorochlorozirconate (FCZ) glass-ceramic containing orthorhombic barium chloride crystals doped with divalent europium was evaluated for use as a storage phosphor in gamma-ray imaging. X-ray diffraction and phosphorimetry of the glass-ceramic sample showed the presence of a significant amount of orthorhombic barium chloride crystals in the glass matrix. Transmission electron microscopy and scanning electron microscopy were used to identify crystal size, structure, and morphology. The size of the orthorhombic barium chloride crystals in the FCZ glass matrix was very large, ~0.5–0.7 μm, which can limit image resolution. The FCZ glass-ceramic sample was exposed to 1 MeV gammamore » rays to determine its photostimulated emission characteristics at high energies, which were found to be suitable for imaging applications. Test images were made at 2 MeV energies using gap and step wedge phantoms. Gaps as small as 101.6 μm in a 440 stainless steel phantom were imaged using the sample imaging plate. Analysis of an image created using a depleted uranium step wedge phantom showed that emission is proportional to incident energy at the sample and the estimated absorbed dose. Finally, the results showed that the sample imaging plate has potential for gamma-ray-computed radiography and dosimetry applications.« less
  • Computed radiography is emerging as a digital imaging modality for use in conventional radiography. It is based on photostimulable phosphor image plate technology. The image plate (IP) is housed in a cassette similar to a standard radiographic cassette. The IP phosphor retains a latent image of the energy pattern to which it was exposed. This latent image is read as it is released from the phosphor by laser light exposure. The image is laser printed on 10 in x 14 in film.
  • Purpose: The purpose of this work is to improve the noise power spectrum (NPS), and thus the detective quantum efficiency (DQE), of computed radiography (CR) images by correcting for spatial gain variations specific to individual imaging plates. CR devices have not traditionally employed gain-map corrections, unlike the case with flat-panel detectors, because of the multiplicity of plates used with each reader. The lack of gain-map correction has limited the DQE(f) at higher exposures with CR. This current work describes a feasible solution to generating plate-specific gain maps. Methods: Ten high-exposure open field images were taken with an RQA5 spectrum, usingmore » a sixth generation CR plate suspended in air without a cassette. Image values were converted to exposure, the plates registered using fiducial dots on the plate, the ten images averaged, and then high-pass filtered to remove low frequency contributions from field inhomogeneity. A gain-map was then produced by converting all pixel values in the average into fractions with mean of one. The resultant gain-map of the plate was used to normalize subsequent single images to correct for spatial gain fluctuation. To validate performance, the normalized NPS (NNPS) for all images was calculated both with and without the gain-map correction. Variations in the quality of correction due to exposure levels, beam voltage/spectrum, CR reader used, and registration were investigated. Results: The NNPS with plate-specific gain-map correction showed improvement over the noncorrected case over the range of frequencies from 0.15 to 2.5 mm{sup -1}. At high exposure (40 mR), NNPS was 50%-90% better with gain-map correction than without. A small further improvement in NNPS was seen from carefully registering the gain-map with subsequent images using small fiducial dots, because of slight misregistration during scanning. Further improvement was seen in the NNPS from scaling the gain map about the mean to account for different beam spectra. Conclusions: This study demonstrates that a simple gain-map can be used to correct for the fixed-pattern noise in a given plate and thus improve the DQE of CR imaging. Such a method could easily be implemented by manufacturers because each plate has a unique bar code and the gain-map for all plates associated with a reader could be stored for future retrieval. These experiments indicated that an improvement in NPS (and hence, DQE) is possible, depending on exposure level, over a wide range of frequencies with this technique.« less