skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Super-resolving quantum radar: Coherent-state sources with homodyne detection suffice to beat the diffraction limit

Journal Article · · Journal of Applied Physics
DOI:https://doi.org/10.1063/1.4829016· OSTI ID:22258778
;  [1];  [2]
  1. Hearne Institute for Theoretical Physics and Department of Physics and Astronomy Louisiana State University, Baton Rouge, Louisiana 70803 (United States)
  2. Department of Physics and Astronomy, Lehman College, The City University of New York, Bronx, New York 10468-1589 (United States)

There has been much recent interest in quantum metrology for applications to sub-Raleigh ranging and remote sensing such as in quantum radar. For quantum radar, atmospheric absorption and diffraction rapidly degrades any actively transmitted quantum states of light, such as N00N states, so that for this high-loss regime the optimal strategy is to transmit coherent states of light, which suffer no worse loss than the linear Beer's law for classical radar attenuation, and which provide sensitivity at the shot-noise limit in the returned power. We show that coherent radar radiation sources, coupled with a quantum homodyne detection scheme, provide both longitudinal and angular super-resolution much below the Rayleigh diffraction limit, with sensitivity at shot-noise in terms of the detected photon power. Our approach provides a template for the development of a complete super-resolving quantum radar system with currently available technology.

OSTI ID:
22258778
Journal Information:
Journal of Applied Physics, Vol. 114, Issue 19; Other Information: (c) 2013 AIP Publishing LLC; Country of input: International Atomic Energy Agency (IAEA); ISSN 0021-8979
Country of Publication:
United States
Language:
English

Similar Records

Quantum cryptography using pulsed homodyne detection
Journal Article · Wed Oct 01 00:00:00 EDT 2003 · Physical Review. A · OSTI ID:22258778

Scalable multiphoton quantum metrology with neither pre- nor post-selected measurements
Journal Article · Thu Oct 21 00:00:00 EDT 2021 · Applied Physics Reviews · OSTI ID:22258778

Bennett-Brassard 1984 quantum key distribution using conjugate homodyne detection
Journal Article · Wed Jan 20 00:00:00 EST 2021 · Physical Review A · OSTI ID:22258778