skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Determination of residual monomers resulting from the chemical polymerization process of dental materials

Journal Article · · AIP Conference Proceedings
DOI:https://doi.org/10.1063/1.4833703· OSTI ID:22257221
 [1];  [2];  [3]
  1. Babes Bolyai University, Raluca Ripan Chemistry Research Institute, Department of Polymer Composites, 400294 Cluj-Napoca, Romania and Technical University of Cluj-Napoca, Physics and Chemistry Department, 400114 Cluj-Napoca (Romania)
  2. Babes Bolyai University, Raluca Ripan Chemistry Research Institute, Department of Polymer Composites, 400294 Cluj-Napoca (Romania)
  3. Technical University of Cluj-Napoca, Physics and Chemistry Department, 400114 Cluj-Napoca (Romania)

The residual monomer present in post-polymerized dental materials encourages premature degradation of the reconstructed tooth. That is why the residual monomer should be quantified in a simple, fast, accurate and reproducible manner. In our work we propose such an approach for accurate determination of the residual monomer in dental materials which is based on low-field nuclear magnetic resonance (NMR) relaxometry. The results of the NMR approach are compared with those of the high performance liquid chromatography (HPLC) technique. The samples under study contain the main monomers (2,2-bis[4-(2-hydroxy-3-methacryloyloxypropoxy)phenyl]propane and triethylene glycol dimethacrylate) constituting the liquid phase of most dental materials and an initiator. Two samples were analyzed with different ratios of chemical initiation systems: N,N-dimethyl-p-toluide: benzoyl peroxide (1:2 and 0.7:1.2). The results obtained by both techniques highlight that by reducing the initiator the polymerization process slows down and the amount of residual monomer reduces. This prevents the premature degradation of the dental fillings and consequently the reduction of the biomaterial resistance.

OSTI ID:
22257221
Journal Information:
AIP Conference Proceedings, Vol. 1565, Issue 1; Conference: PIM 2013: International conference on processes in isotopes and molecules, Cluj Napoca (Romania), 25-27 Sep 2013; Other Information: (c) 2013 AIP Publishing LLC; Country of input: International Atomic Energy Agency (IAEA); ISSN 0094-243X
Country of Publication:
United States
Language:
English