skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Empirical assessment of the detection efficiency of CR-39 at high proton fluence and a compact, proton detector for high-fluence applications

Journal Article · · Review of Scientific Instruments
DOI:https://doi.org/10.1063/1.4870898· OSTI ID:22254938
; ; ; ; ; ; ; ; ; ;  [1]; ; ; ;  [2]; ; ; ;  [3];
  1. Plasma Science and Fusion Center, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (United States)
  2. Laboratory for Laser Energetics, University of Rochester, Rochester, New York 14623 (United States)
  3. Lawrence Livermore National Laboratory, Livermore, California 94550 (United States)

CR-39 solid-state nuclear track detectors are widely used in physics and in many inertial confinement fusion (ICF) experiments, and under ideal conditions these detectors have 100% detection efficiency for ∼0.5–8 MeV protons. When the fluence of incident particles becomes too high, overlap of particle tracks leads to under-counting at typical processing conditions (5 h etch in 6N NaOH at 80 °C). Short etch times required to avoid overlap can cause under-counting as well, as tracks are not fully developed. Experiments have determined the minimum etch times for 100% detection of 1.7–4.3-MeV protons and established that for 2.4-MeV protons, relevant for detection of DD protons, the maximum fluence that can be detected using normal processing techniques is ≲3 × 10{sup 6} cm{sup −2}. A CR-39-based proton detector has been developed to mitigate issues related to high particle fluences on ICF facilities. Using a pinhole and scattering foil several mm in front of the CR-39, proton fluences at the CR-39 are reduced by more than a factor of ∼50, increasing the operating yield upper limit by a comparable amount.

OSTI ID:
22254938
Journal Information:
Review of Scientific Instruments, Vol. 85, Issue 4; Other Information: (c) 2014 AIP Publishing LLC; Country of input: International Atomic Energy Agency (IAEA); ISSN 0034-6748
Country of Publication:
United States
Language:
English

Cited By (2)

Modified parameterization of the Li-Petrasso charged-particle stopping power theory journal December 2019
Nuclear diagnostics for Inertial Confinement Fusion (ICF) plasmas journal January 2020