skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Interpenetration and stagnation in colliding laser plasmas

Journal Article · · Physics of Plasmas
DOI:https://doi.org/10.1063/1.4859136· OSTI ID:22252189
 [1]; ;  [1];  [2]; ;  [3];  [4]
  1. Center for Materials Under eXtreme Environment, School of Nuclear Engineering, Purdue University, West Lafayette, Indiana 47907 (United States)
  2. School of Physical Sciences and NCPST, Dublin City University, Dublin 9 (Ireland)
  3. Graduate School of Engineering, Osaka University, Yamada-oka 2-1, Suita, Osaka 5650871 (Japan)
  4. National Institute for Fusion Science, 322-6 Oroshi, Toki, Gifu (Japan)

We have investigated plasma stagnation and interaction effects in colliding laser-produced plasmas. For generating colliding plasmas, two split laser beams were line-focused onto a hemi-circular target and the seed plasmas so produced were allowed to expand in mutually orthogonal directions. This experimental setup forced the expanding seed plasmas to come to a focus at the center of the chamber. The interpenetration and stagnation of plasmas of candidate fusion wall materials, viz., carbon and tungsten, and other materials, viz., aluminum, and molybdenum were investigated in this study. Fast-gated imaging, Faraday cup ion analysis, and optical emission spectroscopy were used for diagnosing seed and colliding plasma plumes. Our results show that high-Z target (W, Mo) plasma ions interpenetrate each other, while low-Z (C, Al) plasmas stagnate at the collision plane. For carbon seed plasmas, an intense stagnation was observed resulting in longer plasma lifetime; in addition, the stagnation layer was found to be rich with C{sub 2} dimers.

OSTI ID:
22252189
Journal Information:
Physics of Plasmas, Vol. 21, Issue 1; Other Information: (c) 2014 AIP Publishing LLC; Country of input: International Atomic Energy Agency (IAEA); ISSN 1070-664X
Country of Publication:
United States
Language:
English

Similar Records

Modeling ion interpenetration, stagnation, and thermalization in colliding plasmas
Journal Article · Fri Mar 01 00:00:00 EST 1996 · Physics of Plasmas · OSTI ID:22252189

Molecular formation in the stagnation region of colliding laser-produced plasmas
Journal Article · Thu Oct 27 00:00:00 EDT 2016 · Plasma Sources Science and Technology · OSTI ID:22252189

Stagnation and interpenetration of laser-created colliding plasmas
Journal Article · Wed Apr 01 00:00:00 EST 1992 · Physics of Fluids B; (United States) · OSTI ID:22252189