skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Multi-time Schrödinger equations cannot contain interaction potentials

Abstract

Multi-time wave functions are wave functions that have a time variable for every particle, such as ϕ(t{sub 1},x{sub 1},...,t{sub N},x{sub N}). They arise as a relativistic analog of the wave functions of quantum mechanics but can be applied also in quantum field theory. The evolution of a wave function with N time variables is governed by N Schrödinger equations, one for each time variable. These Schrödinger equations can be inconsistent with each other, i.e., they can fail to possess a joint solution for every initial condition; in fact, the N Hamiltonians need to satisfy a certain commutator condition in order to be consistent. While this condition is automatically satisfied for non-interacting particles, it is a challenge to set up consistent multi-time equations with interaction. We prove for a wide class of multi-time Schrödinger equations that the presence of interaction potentials (given by multiplication operators) leads to inconsistency. We conclude that interaction has to be implemented instead by creation and annihilation of particles, which, in fact, can be done consistently [S. Petrat and R. Tumulka, “Multi-time wave functions for quantum field theory,” Ann. Physics (to be published)]. We also prove the following result: When a cut-off length δ > 0 ismore » introduced (in the sense that the multi-time wave function is defined only on a certain set of spacelike configurations, thereby breaking Lorentz invariance), then the multi-time Schrödinger equations with interaction potentials of range δ are consistent; however, in the desired limit δ → 0 of removing the cut-off, the resulting multi-time equations are interaction-free, which supports the conclusion expressed in the title.« less

Authors:
 [1];  [2]
  1. Mathematisches Institut, Ludwig-Maximilians-Universität, Theresienstr. 39, 80333 München (Germany)
  2. Department of Mathematics, Rutgers University, 110 Frelinghuysen Road, Piscataway, New Jersey 08854-8019 (United States)
Publication Date:
OSTI Identifier:
22251097
Resource Type:
Journal Article
Resource Relation:
Journal Name: Journal of Mathematical Physics; Journal Volume: 55; Journal Issue: 3; Other Information: (c) 2014 AIP Publishing LLC; Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
71 CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS; 72 PHYSICS OF ELEMENTARY PARTICLES AND FIELDS; ANNIHILATION; COMMUTATORS; EQUATIONS; HAMILTONIANS; LORENTZ INVARIANCE; MATHEMATICAL SOLUTIONS; POTENTIALS; QUANTUM FIELD THEORY; QUANTUM MECHANICS; RELATIVISTIC RANGE; WAVE FUNCTIONS

Citation Formats

Petrat, Sören, E-mail: petrat@math.lmu.de, and Tumulka, Roderich, E-mail: tumulka@math.rutgers.edu. Multi-time Schrödinger equations cannot contain interaction potentials. United States: N. p., 2014. Web. doi:10.1063/1.4867524.
Petrat, Sören, E-mail: petrat@math.lmu.de, & Tumulka, Roderich, E-mail: tumulka@math.rutgers.edu. Multi-time Schrödinger equations cannot contain interaction potentials. United States. doi:10.1063/1.4867524.
Petrat, Sören, E-mail: petrat@math.lmu.de, and Tumulka, Roderich, E-mail: tumulka@math.rutgers.edu. 2014. "Multi-time Schrödinger equations cannot contain interaction potentials". United States. doi:10.1063/1.4867524.
@article{osti_22251097,
title = {Multi-time Schrödinger equations cannot contain interaction potentials},
author = {Petrat, Sören, E-mail: petrat@math.lmu.de and Tumulka, Roderich, E-mail: tumulka@math.rutgers.edu},
abstractNote = {Multi-time wave functions are wave functions that have a time variable for every particle, such as ϕ(t{sub 1},x{sub 1},...,t{sub N},x{sub N}). They arise as a relativistic analog of the wave functions of quantum mechanics but can be applied also in quantum field theory. The evolution of a wave function with N time variables is governed by N Schrödinger equations, one for each time variable. These Schrödinger equations can be inconsistent with each other, i.e., they can fail to possess a joint solution for every initial condition; in fact, the N Hamiltonians need to satisfy a certain commutator condition in order to be consistent. While this condition is automatically satisfied for non-interacting particles, it is a challenge to set up consistent multi-time equations with interaction. We prove for a wide class of multi-time Schrödinger equations that the presence of interaction potentials (given by multiplication operators) leads to inconsistency. We conclude that interaction has to be implemented instead by creation and annihilation of particles, which, in fact, can be done consistently [S. Petrat and R. Tumulka, “Multi-time wave functions for quantum field theory,” Ann. Physics (to be published)]. We also prove the following result: When a cut-off length δ > 0 is introduced (in the sense that the multi-time wave function is defined only on a certain set of spacelike configurations, thereby breaking Lorentz invariance), then the multi-time Schrödinger equations with interaction potentials of range δ are consistent; however, in the desired limit δ → 0 of removing the cut-off, the resulting multi-time equations are interaction-free, which supports the conclusion expressed in the title.},
doi = {10.1063/1.4867524},
journal = {Journal of Mathematical Physics},
number = 3,
volume = 55,
place = {United States},
year = 2014,
month = 3
}
  • Multi-time wave functions are wave functions that have a time variable for every particle, such as ϕ(t{sub 1},x{sub 1},...,t{sub N},x{sub N}). They arise as a relativistic analog of the wave functions of quantum mechanics but can be applied also in quantum field theory. The evolution of a wave function with N time variables is governed by N Schrödinger equations, one for each time variable. These Schrödinger equations can be inconsistent with each other, i.e., they can fail to possess a joint solution for every initial condition; in fact, the N Hamiltonians need to satisfy a certain commutator condition in ordermore » to be consistent. While this condition is automatically satisfied for non-interacting particles, it is a challenge to set up consistent multi-time equations with interaction. We prove for a wide class of multi-time Schrödinger equations that the presence of interaction potentials (given by multiplication operators) leads to inconsistency. We conclude that interaction has to be implemented instead by creation and annihilation of particles, which, in fact, can be done consistently [S. Petrat and R. Tumulka, “Multi-time wave functions for quantum field theory,” Ann. Physics (to be published)]. We also prove the following result: When a cut-off length δ > 0 is introduced (in the sense that the multi-time wave function is defined only on a certain set of spacelike configurations, thereby breaking Lorentz invariance), then the multi-time Schrödinger equations with interaction potentials of range δ are consistent; however, in the desired limit δ → 0 of removing the cut-off, the resulting multi-time equations are interaction-free, which supports the conclusion expressed in the title.« less
  • In 1932, Dirac proposed a formulation in terms of multi-time wave functions as candidate for relativistic many-particle quantum mechanics. A well-known consistency condition that is necessary for existence of solutions strongly restricts the possible interaction types between the particles. It was conjectured by Petrat and Tumulka that interactions described by multiplication operators are generally excluded by this condition, and they gave a proof of this claim for potentials without spin-coupling. Under suitable assumptions on the differentiability of possible solutions, we show that there are potentials which are admissible, give an explicit example, however, show that none of them fulfills themore » physically desirable Poincaré invariance. We conclude that in this sense, Dirac’s multi-time formalism does not allow to model interaction by multiplication operators, and briefly point out several promising approaches to interacting models one can instead pursue.« less
  • In this paper, we study a nonlinear Schrödinger equations with magnetic potentials in R{sup N} involving subcritical growth. Under some decaying and weak symmetry conditions of both electric and magnetic potentials, we prove that the equation has infinitely many nonradial complex-valued solutions by applying the finite reduction method.
  • We study the following singularly perturbed problem for a coupled nonlinear Schrödinger system which arises in Bose-Einstein condensate: −ε{sup 2}Δu + a(x)u = μ{sub 1}u{sup 3} + βuv{sup 2} and −ε{sup 2}Δv + b(x)v = μ{sub 2}v{sup 3} + βu{sup 2}v in R{sup 3} with u, v > 0 and u(x), v(x) → 0 as |x| → ∞. Here, a, b are non-negative continuous potentials, and μ{sub 1}, μ{sub 2} > 0. We consider the case where the coupling constant β > 0 is relatively large. Then for sufficiently small ε > 0, we obtain positive solutions of this systemmore » which concentrate around local minima of the potentials as ε → 0. The novelty is that the potentials a and b may vanish at someplace and decay to 0 at infinity.« less
  • Symmetry group methods are applied to obtain all explicit group-invariant radial solutions to a class of semilinear Schrödinger equations in dimensions n ≠ 1. Both focusing and defocusing cases of a power nonlinearity are considered, including the special case of the pseudo-conformal power p = 4/n relevant for critical dynamics. The methods involve, first, reduction of the Schrödinger equations to group-invariant semilinear complex 2nd order ordinary differential equations (ODEs) with respect to an optimal set of one-dimensional point symmetry groups, and second, use of inherited symmetries, hidden symmetries, and conditional symmetries to solve each ODE by quadratures. Through Noether's theorem,more » all conservation laws arising from these point symmetry groups are listed. Some group-invariant solutions are found to exist for values of n other than just positive integers, and in such cases an alternative two-dimensional form of the Schrödinger equations involving an extra modulation term with a parameter m = 2−n ≠ 0 is discussed.« less