skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Investigating Low Temperature Properties of Rubber Seals - 13020

Abstract

To achieve the required tightness levels of containers for low and intermediate level radioactive wastes rubbers are widely applied as main sealing materials. The save encapsulation of the radioactive container contents has to be guaranteed according to legislation and appropriate guidelines for long storage periods as well as down to temperatures of -40 deg. C during transportation. Therefore the understanding of failure mechanisms that lead to leakage at low temperatures is of high importance. It is known that the material properties of rubbers are strongly influenced by temperature. At low temperatures this is caused by the rubber-glass transition (abbr. glass transition). During continuous cooling the material changes from rubber-like entropy-elastic to stiff energy-elastic behaviour, that allows nearly no strain or retraction. Therefore, rubbers are normally used above their glass transition but the minimum working temperature limit is not defined precisely, what can cause problems during application. The temperature range where full functionality is possible is strongly dependent on the application conditions and the material. For this investigation mainly ethylene propylene diene (EPDM) and fluorocarbon rubbers (FKM) were selected as they are often used for radioactive waste containers. Differential Scanning Calorimetry (DSC) and Dynamic Mechanical Analysis (DMA) are typically used formore » the determination of the temperature range of the glass transition process. The standardized compression set measurement according to ISO 815 is common for investigation of rubber sealing materials as the test simulates the seal behaviour after release. To reduce the test time of the standard tests a faster technique giving the same information was developed. Additionally, the breakdown temperature of the sealing function of complete O-ring seals is measured in a component test setup to compare it with the results of the other tests. The experimental setup is capable of measuring the leakage rate at low temperatures by the pressure rise method. A model was developed that allows calculating the minimum working temperature limit of a seal by combining the results of the applied methods. (authors)« less

Authors:
; ;  [1]
  1. BAM Federal Institute for Materials Research and Testing, Unter den Eichen 87, 12203 Berlin (Germany)
Publication Date:
Research Org.:
WM Symposia, 1628 E. Southern Avenue, Suite 9-332, Tempe, AZ 85282 (United States)
OSTI Identifier:
22224829
Report Number(s):
INIS-US-13-WM-13020
TRN: US14V0262045784
Resource Type:
Conference
Resource Relation:
Conference: WM2013: Waste Management Conference: International collaboration and continuous improvement, Phoenix, AZ (United States), 24-28 Feb 2013; Other Information: Country of input: France; 17 refs.
Country of Publication:
United States
Language:
English
Subject:
36 MATERIALS SCIENCE; 12 MANAGEMENT OF RADIOACTIVE WASTES, AND NON-RADIOACTIVE WASTES FROM NUCLEAR FACILITIES; CALORIMETRY; COMPARATIVE EVALUATIONS; COMPRESSION; COOLING; ELASTICITY; ENCAPSULATION; ENTROPY; ETHYLENE PROPYLENE DIENE POLYMERS; FAILURES; GASKETS; GLASS; INTERMEDIATE-LEVEL RADIOACTIVE WASTES; LEGISLATION; MATERIALS TESTING; RECOMMENDATIONS; RUBBERS; SEALING MATERIALS; TEMPERATURE RANGE 0065-0273 K

Citation Formats

Jaunich, M., Wolff, D., and Stark, W. Investigating Low Temperature Properties of Rubber Seals - 13020. United States: N. p., 2013. Web.
Jaunich, M., Wolff, D., & Stark, W. Investigating Low Temperature Properties of Rubber Seals - 13020. United States.
Jaunich, M., Wolff, D., and Stark, W. 2013. "Investigating Low Temperature Properties of Rubber Seals - 13020". United States.
@article{osti_22224829,
title = {Investigating Low Temperature Properties of Rubber Seals - 13020},
author = {Jaunich, M. and Wolff, D. and Stark, W.},
abstractNote = {To achieve the required tightness levels of containers for low and intermediate level radioactive wastes rubbers are widely applied as main sealing materials. The save encapsulation of the radioactive container contents has to be guaranteed according to legislation and appropriate guidelines for long storage periods as well as down to temperatures of -40 deg. C during transportation. Therefore the understanding of failure mechanisms that lead to leakage at low temperatures is of high importance. It is known that the material properties of rubbers are strongly influenced by temperature. At low temperatures this is caused by the rubber-glass transition (abbr. glass transition). During continuous cooling the material changes from rubber-like entropy-elastic to stiff energy-elastic behaviour, that allows nearly no strain or retraction. Therefore, rubbers are normally used above their glass transition but the minimum working temperature limit is not defined precisely, what can cause problems during application. The temperature range where full functionality is possible is strongly dependent on the application conditions and the material. For this investigation mainly ethylene propylene diene (EPDM) and fluorocarbon rubbers (FKM) were selected as they are often used for radioactive waste containers. Differential Scanning Calorimetry (DSC) and Dynamic Mechanical Analysis (DMA) are typically used for the determination of the temperature range of the glass transition process. The standardized compression set measurement according to ISO 815 is common for investigation of rubber sealing materials as the test simulates the seal behaviour after release. To reduce the test time of the standard tests a faster technique giving the same information was developed. Additionally, the breakdown temperature of the sealing function of complete O-ring seals is measured in a component test setup to compare it with the results of the other tests. The experimental setup is capable of measuring the leakage rate at low temperatures by the pressure rise method. A model was developed that allows calculating the minimum working temperature limit of a seal by combining the results of the applied methods. (authors)},
doi = {},
url = {https://www.osti.gov/biblio/22224829}, journal = {},
number = ,
volume = ,
place = {United States},
year = {Mon Jul 01 00:00:00 EDT 2013},
month = {Mon Jul 01 00:00:00 EDT 2013}
}

Conference:
Other availability
Please see Document Availability for additional information on obtaining the full-text document. Library patrons may search WorldCat to identify libraries that hold this conference proceeding.

Save / Share: