skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Influence of the composition of cement kiln dust on its interaction with fly ash and slag

Journal Article · · Cement and Concrete Research
 [1];  [2]
  1. Department of Civil and Environmental Engineering, University of Illinois, Urbana-Champaign, IL 61801 (United States)
  2. Department of Civil and Environmental Engineering, Clarkson University, Potsdam, NY 13699 (United States)

Cement kiln dust (CKD), a by-product of the cement industry, contains significant amounts of alkali, free lime, chloride and sulfate. Wide variation reported in the chemical composition of CKDs limits their potential application as a sustainable binder component in concrete. In the current study, the performance of two different CKDs as components in a novel binder is evaluated. Several binders are developed by blending CKDs with fly ash or slag. Binders with 70% CKD were prepared at a water-to-binder ratio of 0.4, and heat-cured at 75 °C to accelerate the strength development. The hydration progress was monitored using X-ray diffraction, and morphological examination was performed using scanning electron microscopy (SEM) and transmission electron microscopy (TEM). Ettringite and calcium aluminosilicate hydrate (C-A-S-H) were identified as the main hydration products in the hardened binder system. Strength development of CKD-based binder was found to be significantly influenced by its free lime and sulfate contents. -- Highlights: •Interaction of cement kiln dust with fly ash and slag was explored. •CKD with higher free lime and sulfate content increased the strength of binder. •C-S-H like reaction gel with fibrillar morphology is observed in CKD-based binders.

OSTI ID:
22220827
Journal Information:
Cement and Concrete Research, Vol. 54; Other Information: Copyright (c) 2013 Elsevier Science B.V., Amsterdam, The Netherlands, All rights reserved.; Country of input: International Atomic Energy Agency (IAEA); ISSN 0008-8846
Country of Publication:
United States
Language:
English