skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: La{sub 0.5}Sr{sub 0.5}TiO{sub 3} nanopowders prepared by the hydrothermal method

Journal Article · · Materials Research Bulletin
 [1];  [2];  [3];  [3]
  1. School of General Education, Faculty of Liberal Arts, Rajamangala University of Rattanakosin Wang Klai Kangwon Campus, 77110 (Thailand)
  2. School of Physics, Institute of Science, Suranaree University of Technology, Nakhon Ratchasima 30000 (Thailand)
  3. Department of Physics, Faculty of Science, Khon Kaen University, Khon Kaen 40002 (Thailand)

Graphical abstract: LRTEM image of the single-phase La{sub 0.5}Sr{sub 0.5}TiO{sub 3} particles. It is seen from the figure that the product has a plate-like morphology with average particles sizes in the range of 100–300 nm. In addition, the SAED data taken from an individual particle (lower inset) shows the presence of sharp diffraction rings, which are indicative of polycrystalline La{sub 0.5}Sr{sub 0.5}TiO{sub 3} formation. The high-resolution TEM image (upper inset) shows for further confirmation of a crystalline structure of La{sub 0.5}Sr{sub 0.5}TiO{sub 3} powder. This image shows a clearly resolved crystalline domain with uniform interplanar spacing of 0.276 nm. Highlights: ► La{sub 0.5}Sr{sub 0.5}TiO{sub 3} nanopowder is prepared in 2 M KOH solution by hydrothermal method. ► The solution is heat treated at 220 °C for 24 h in air. ► LRTEM reveals a plate-like morphology of particle with average size of 100–300 nm. ► HRTEM image shows a crystalline domain with interplanar spacing of 0.276 nm. -- Abstract: La{sub 0.5}Sr{sub 0.5}TiO{sub 3} nanopowders were prepared by the hydrothermal method. The influence of processing parameters, including KOH concentration, reaction temperature and reaction time on the obtained products were studied. The structure and morphology of the obtained products were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The XRD results show that pure phase La{sub 0.5}Sr{sub 0.5}TiO{sub 3} nanopowders can be successfully synthesized with 2 M KOH concentration at a low temperature of 220 °C for 24 h. In addition, the product has a plate-like shape with particle sizes in the range of 25–100 nm as estimated by TEM.

OSTI ID:
22215718
Journal Information:
Materials Research Bulletin, Vol. 47, Issue 9; Other Information: Copyright (c) 2012 Elsevier Science B.V., Amsterdam, The Netherlands, All rights reserved.; Country of input: International Atomic Energy Agency (IAEA); ISSN 0025-5408
Country of Publication:
United States
Language:
English