skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Prenatal cadmium exposure alters postnatal immune cell development and function

Abstract

Cadmium (Cd) is generally found in low concentrations in the environment due to its widespread and continual use, however, its concentration in some foods and cigarette smoke is high. Although evidence demonstrates that adult exposure to Cd causes changes in the immune system, there are limited reports of immunomodulatory effects of prenatal exposure to Cd. This study was designed to investigate the effects of prenatal exposure to Cd on the immune system of the offspring. Pregnant C57Bl/6 mice were exposed to an environmentally relevant dose of CdCl{sub 2} (10 ppm) and the effects on the immune system of the offspring were assessed at two time points following birth (2 and 7 weeks of age). Thymocyte and splenocyte phenotypes were analyzed by flow cytometry. Prenatal Cd exposure did not affect thymocyte populations at 2 and 7 weeks of age. In the spleen, the only significant effect on phenotype was a decrease in the number of macrophages in male offspring at both time points. Analysis of cytokine production by stimulated splenocytes demonstrated that prenatal Cd exposure decreased IL-2 and IL-4 production by cells from female offspring at 2 weeks of age. At 7 weeks of age, splenocyte IL-2 production was decreased inmore » Cd-exposed males while IFN-γ production was decreased from both male and female Cd-exposed offspring. The ability of the Cd-exposed offspring to respond to immunization with a S. pneumoniae vaccine expressing T-dependent and T-independent streptococcal antigens showed marked increases in the levels of both T-dependent and T-independent serum antibody levels compared to control animals. CD4{sup +}FoxP3{sup +}CD25{sup +} (nTreg) cell percentages were increased in the spleen and thymus in all Cd-exposed offspring except in the female spleen where a decrease was seen. CD8{sup +}CD223{sup +} T cells were markedly decreased in the spleens in all offspring at 7 weeks of age. These findings suggest that even very low levels of Cd exposure during gestation can result in long term detrimental effects on the immune system of the offspring and these effects are to some extent sex-specific. -- Highlights: ► Prenatal exposure to Cd causes no thymocyte phenotype changes in the offspring ► Analysis of the splenocyte phenotype demonstrates a macrophage-specific effect only in male offspring ► The cytokine profiles suggest an effect on peripheral Th1 cells in female and to a lesser degree in male offspring ► There was a marked increase in serum anti-streptococcal antibody levels after immunization in both sexes ► There was a marked decrease in the numbers of splenic CD8{sup +}CD223{sup +} cells in both sexes.« less

Authors:
; ; ; ; ;
Publication Date:
OSTI Identifier:
22215329
Resource Type:
Journal Article
Resource Relation:
Journal Name: Toxicology and Applied Pharmacology; Journal Volume: 261; Journal Issue: 2; Other Information: Copyright (c) 2012 Elsevier Science B.V., Amsterdam, The Netherlands, All rights reserved.; Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
60 APPLIED LIFE SCIENCES; ANTIBODIES; CADMIUM; CADMIUM CHLORIDES; CONCENTRATION RATIO; LYMPHOKINES; MACROPHAGES; MICE; PHENOTYPE; PRENATAL EXPOSURE; PROGENY; SEX; SPLEEN; THYMOCYTES; THYMUS; TOBACCO SMOKES

Citation Formats

Hanson, Miranda L., Holásková, Ida, Elliott, Meenal, Brundage, Kathleen M., Schafer, Rosana, and Barnett, John B., E-mail: jbarnett@hsc.wvu.edu. Prenatal cadmium exposure alters postnatal immune cell development and function. United States: N. p., 2012. Web. doi:10.1016/J.TAAP.2012.04.002.
Hanson, Miranda L., Holásková, Ida, Elliott, Meenal, Brundage, Kathleen M., Schafer, Rosana, & Barnett, John B., E-mail: jbarnett@hsc.wvu.edu. Prenatal cadmium exposure alters postnatal immune cell development and function. United States. doi:10.1016/J.TAAP.2012.04.002.
Hanson, Miranda L., Holásková, Ida, Elliott, Meenal, Brundage, Kathleen M., Schafer, Rosana, and Barnett, John B., E-mail: jbarnett@hsc.wvu.edu. 2012. "Prenatal cadmium exposure alters postnatal immune cell development and function". United States. doi:10.1016/J.TAAP.2012.04.002.
@article{osti_22215329,
title = {Prenatal cadmium exposure alters postnatal immune cell development and function},
author = {Hanson, Miranda L. and Holásková, Ida and Elliott, Meenal and Brundage, Kathleen M. and Schafer, Rosana and Barnett, John B., E-mail: jbarnett@hsc.wvu.edu},
abstractNote = {Cadmium (Cd) is generally found in low concentrations in the environment due to its widespread and continual use, however, its concentration in some foods and cigarette smoke is high. Although evidence demonstrates that adult exposure to Cd causes changes in the immune system, there are limited reports of immunomodulatory effects of prenatal exposure to Cd. This study was designed to investigate the effects of prenatal exposure to Cd on the immune system of the offspring. Pregnant C57Bl/6 mice were exposed to an environmentally relevant dose of CdCl{sub 2} (10 ppm) and the effects on the immune system of the offspring were assessed at two time points following birth (2 and 7 weeks of age). Thymocyte and splenocyte phenotypes were analyzed by flow cytometry. Prenatal Cd exposure did not affect thymocyte populations at 2 and 7 weeks of age. In the spleen, the only significant effect on phenotype was a decrease in the number of macrophages in male offspring at both time points. Analysis of cytokine production by stimulated splenocytes demonstrated that prenatal Cd exposure decreased IL-2 and IL-4 production by cells from female offspring at 2 weeks of age. At 7 weeks of age, splenocyte IL-2 production was decreased in Cd-exposed males while IFN-γ production was decreased from both male and female Cd-exposed offspring. The ability of the Cd-exposed offspring to respond to immunization with a S. pneumoniae vaccine expressing T-dependent and T-independent streptococcal antigens showed marked increases in the levels of both T-dependent and T-independent serum antibody levels compared to control animals. CD4{sup +}FoxP3{sup +}CD25{sup +} (nTreg) cell percentages were increased in the spleen and thymus in all Cd-exposed offspring except in the female spleen where a decrease was seen. CD8{sup +}CD223{sup +} T cells were markedly decreased in the spleens in all offspring at 7 weeks of age. These findings suggest that even very low levels of Cd exposure during gestation can result in long term detrimental effects on the immune system of the offspring and these effects are to some extent sex-specific. -- Highlights: ► Prenatal exposure to Cd causes no thymocyte phenotype changes in the offspring ► Analysis of the splenocyte phenotype demonstrates a macrophage-specific effect only in male offspring ► The cytokine profiles suggest an effect on peripheral Th1 cells in female and to a lesser degree in male offspring ► There was a marked increase in serum anti-streptococcal antibody levels after immunization in both sexes ► There was a marked decrease in the numbers of splenic CD8{sup +}CD223{sup +} cells in both sexes.},
doi = {10.1016/J.TAAP.2012.04.002},
journal = {Toxicology and Applied Pharmacology},
number = 2,
volume = 261,
place = {United States},
year = 2012,
month = 6
}
  • Cadmium (Cd) is a common environmental contaminant. Adult exposure to Cd alters the immune system, however, there are limited studies on the effects of prenatal exposure to Cd. Pregnant C57Bl/6 mice were exposed to an environmentally relevant dose of CdCl{sub 2} (10 ppm) and the effects on the immune system of the offspring were assessed at 20 weeks of age. Prenatal Cd exposure caused an increase in the percent of CD4{sup −}CD8{sup −}CD44{sup +}CD25{sup −} (DN1) thymocytes in both sexes and a decrease in the percent of CD4{sup −}CD8{sup −}CD44{sup −}CD25{sup +} (DN3) thymocytes in females. Females had an increasemore » in the percent of splenic CD4{sup +} T cells, CD8{sup +} T cells, and CD45R/B220{sup +} B cells and a decrease in the percent of NK cells and granulocytes (Gr-1{sup +}). Males had an increase in the percent of splenic CD4{sup +} T cells and CD45R/B220{sup +} B cells and a decrease in the percent of CD8{sup +} T cells, NK cells, and granulocytes. The percentage of neutrophils and myeloid-derived suppressor cells were reduced in both sexes. The percent of splenic nTreg cells was decreased in all Cd-exposed offspring. Cd-exposed offspring were immunized with a streptococcal vaccine and the antibody response was determined. PC-specific serum antibody titers were decreased in Cd exposed female offspring but increased in the males. PspA-specific serum IgG titers were increased in both females and males compared to control animals. Females had a decrease in PspA-specific serum IgM antibody titers. Females and males had a decrease in the number of splenic anti-PspA antibody-secreting cells when standardized to the number of B cells. These findings demonstrate that very low levels of Cd exposure during gestation can result in long term sex-specific alterations on the immune system of the offspring. -- Highlights: ► Prenatal exposure to cadmium alters the immune system of 20 week old offspring. ► The percentage of DN1 and DN3 thymocytes was changed. ► Males and females had changed percentages of numerous splenic cell populations. ► The antibody response of a streptococcal vaccine showed numerous changes.« less
  • In addition to cancer endpoints, arsenic exposures can also lead to non-cancerous chronic lung disease. Exposures during sensitive developmental time points can contribute to the adult disease. Using a mouse model, in utero and early postnatal exposures to arsenic (100 ppb or less in drinking water) were found to alter airway reactivity to methacholine challenge in 28 day old pups. Removal of mice from arsenic exposure 28 days after birth did not reverse the alterations in sensitivity to methacholine. In addition, adult mice exposed to similar levels of arsenic in drinking water did not show alterations. Therefore, alterations in airwaymore » reactivity were irreversible and specific to exposures during lung development. These functional changes correlated with protein and gene expression changes as well as morphological structural changes around the airways. Arsenic increased the whole lung levels of smooth muscle actin in a dose dependent manner. The level of smooth muscle mass around airways was increased with arsenic exposure, especially around airways smaller than 100 {mu}m in diameter. This increase in smooth muscle was associated with alterations in extracellular matrix (collagen, elastin) expression. This model system demonstrates that in utero and postnatal exposure to environmentally relevant levels of arsenic can irreversibly alter pulmonary structure and function in the adults.« less
  • It is evident that significant permanent tissue hypoplasia can be produced following radiation exposure late in fetal development. Because two organs, brain and testes, are developmentally and functionally interrelated, it was of interest to determine whether fetal testicular hypoplasia was a primary or a secondary effect of fetal brain irradiation. Twenty-four pregnant Wistar strain rats were randomly assigned to one of four groups, and a laparotomy was performed on day 18 of gestation. The fetuses received sham irradiation, whole body irradiation, or only head/thorax or pelvic body irradiation at a dosage level of 1.5 Gy. Mothers were allowed to delivermore » and raise their offspring until postnatal day 30, when the offspring were weaned. At 60 days of age, 74 male offspring were allowed to mate with colony control females of similar age until successful insemination or until the males reached 90 days of age, when they were killed. Testes were weighed and processed for histologic examination. Direct radiation of testes, due to whole body or pelvic exposure, resulted in testicular growth retardation and significantly reduced spermatogenesis. Breeding activity of the males and the percent of positive inseminations were also slightly reduced. However, a significant percentage of male offspring receiving direct testicular radiation did produce offspring. Head/thorax-only irradiation did not adversely affect testicular growth or spermatogenesis. Therefore, the use of histologic analysis as the sole determinant of infertility may be misleading. This study indicates that testicular growth retardation and an increased infertility rate result from direct prenatal exposure of rat testes to X-radiation and are not necessarily mediated via X-irradiation effects on the central nervous system.« less
  • The epidemiologic link between air pollutant exposure and asthma has been supported by experimental findings, but the mechanisms are not understood. In this study, we evaluated the impact of combined ozone and house dust mite (HDM) exposure on the immunophenotype of peripheral blood and airway lymphocytes from rhesus macaque monkeys during the postnatal period of development. Starting at 30 days of age, monkeys were exposed to 11 cycles of filtered air, ozone, HDM aerosol, or ozone + HDM aerosol. Each cycle consisted of ozone delivered at 0.5 ppm for 5 days (8 h/day), followed by 9 days of filtered air;more » animals received HDM aerosol during the last 3 days of each ozone exposure period. Between 2-3 months of age, animals co-exposed to ozone + HDM exhibited a decline in total circulating leukocyte numbers and increased total circulating lymphocyte frequency. At 3 months of age, blood CD4+/CD25+ lymphocytes were increased with ozone + HDM. At 6 months of age, CD4+/CD25+ and CD8+/CD25+ lymphocyte populations increased in both blood and lavage of ozone + HDM animals. Overall volume of CD25+ cells within airway mucosa increased with HDM exposure. Ozone did not have an additive effect on volume of mucosal CD25+ cells in HDM-exposed animals, but did alter the anatomical distribution of this cell type throughout the proximal and distal airways. We conclude that a window of postnatal development is sensitive to air pollutant and allergen exposure, resulting in immunomodulation of peripheral blood and airway lymphocyte frequency and trafficking.« less