skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Synthesis and properties of A{sub 6}B{sub 2}(OH){sub 16}Cl{sub 2}.4H{sub 2}O (A = Mg, Ni, Zn, Co, Mn and B = Al, Fe) materials for environmental applications

Abstract

Highlights: {yields} A{sub 6}B{sub 2}(OH){sub 16}Cl{sub 2}.4H{sub 2}O (A = Mg, Ni, Zn, Co, Mn and B = Al, Fe) materials were synthesized. {yields} Chemical synthesis produced different levels of crystallinity and ordering degree. {yields} Structural investigation by Raman scattering revealed a complex band structure. {yields} A strong correlation between band structure and ionic radius was determined. -- Abstract: Double layered hydroxide materials of composition A{sub 6}B{sub 2}(OH){sub 16}Cl{sub 2}.4H{sub 2}O (A = Mg, Ni, Zn, Co, Mn and B = Al, Fe) were synthesized by chemical precipitation at 60 {sup o}C. Different levels of crystallinity and ordering degree were observed depending upon the chemical environment or the combination between divalent and trivalent cations. The results from high-resolution transmission electron microscopy revealed that nanostructured layered samples were obtained with interplanar spacing compatible with previous literature. Raman scattering was employed to investigate the complex band structure observed, particularly the lattice vibrations at lower frequencies, which is intimately correlated to the cationic radius of both divalent and trivalent ions. The results showed that strongly coordinated water and chloride ions besides highly structured hydroxide layers have a direct influence on the stability of the hydrotalcites. It was observed that transition and decomposition temperaturesmore » varied largely for different chemical compositions.« less

Authors:
 [1]; ;  [1]
  1. Departamento de Quimica, Universidade Federal de Ouro Preto, Campus Morro do Cruzeiro, ICEB II, Sala 67, Ouro Preto-MG, 35400-000 (Brazil)
Publication Date:
OSTI Identifier:
22212244
Resource Type:
Journal Article
Journal Name:
Materials Research Bulletin
Additional Journal Information:
Journal Volume: 46; Journal Issue: 9; Other Information: Copyright (c) 2011 Elsevier Science B.V., Amsterdam, The Netherlands, All rights reserved.; Country of input: International Atomic Energy Agency (IAEA); Journal ID: ISSN 0025-5408
Country of Publication:
United States
Language:
English
Subject:
36 MATERIALS SCIENCE; CATIONS; DECOMPOSITION; HYDROXIDES; LATTICE VIBRATIONS; LAYERS; NANOSTRUCTURES; OXIDES; RAMAN EFFECT; RAMAN SPECTROSCOPY; SYNTHESIS; TRANSMISSION ELECTRON MICROSCOPY

Citation Formats

Dias, Anderson, E-mail: anderson_dias@iceb.ufop.br, Cunha, Lumena, and Vieira, Andiara C. Synthesis and properties of A{sub 6}B{sub 2}(OH){sub 16}Cl{sub 2}.4H{sub 2}O (A = Mg, Ni, Zn, Co, Mn and B = Al, Fe) materials for environmental applications. United States: N. p., 2011. Web. doi:10.1016/J.MATERRESBULL.2011.05.022.
Dias, Anderson, E-mail: anderson_dias@iceb.ufop.br, Cunha, Lumena, & Vieira, Andiara C. Synthesis and properties of A{sub 6}B{sub 2}(OH){sub 16}Cl{sub 2}.4H{sub 2}O (A = Mg, Ni, Zn, Co, Mn and B = Al, Fe) materials for environmental applications. United States. doi:10.1016/J.MATERRESBULL.2011.05.022.
Dias, Anderson, E-mail: anderson_dias@iceb.ufop.br, Cunha, Lumena, and Vieira, Andiara C. Thu . "Synthesis and properties of A{sub 6}B{sub 2}(OH){sub 16}Cl{sub 2}.4H{sub 2}O (A = Mg, Ni, Zn, Co, Mn and B = Al, Fe) materials for environmental applications". United States. doi:10.1016/J.MATERRESBULL.2011.05.022.
@article{osti_22212244,
title = {Synthesis and properties of A{sub 6}B{sub 2}(OH){sub 16}Cl{sub 2}.4H{sub 2}O (A = Mg, Ni, Zn, Co, Mn and B = Al, Fe) materials for environmental applications},
author = {Dias, Anderson, E-mail: anderson_dias@iceb.ufop.br and Cunha, Lumena and Vieira, Andiara C.},
abstractNote = {Highlights: {yields} A{sub 6}B{sub 2}(OH){sub 16}Cl{sub 2}.4H{sub 2}O (A = Mg, Ni, Zn, Co, Mn and B = Al, Fe) materials were synthesized. {yields} Chemical synthesis produced different levels of crystallinity and ordering degree. {yields} Structural investigation by Raman scattering revealed a complex band structure. {yields} A strong correlation between band structure and ionic radius was determined. -- Abstract: Double layered hydroxide materials of composition A{sub 6}B{sub 2}(OH){sub 16}Cl{sub 2}.4H{sub 2}O (A = Mg, Ni, Zn, Co, Mn and B = Al, Fe) were synthesized by chemical precipitation at 60 {sup o}C. Different levels of crystallinity and ordering degree were observed depending upon the chemical environment or the combination between divalent and trivalent cations. The results from high-resolution transmission electron microscopy revealed that nanostructured layered samples were obtained with interplanar spacing compatible with previous literature. Raman scattering was employed to investigate the complex band structure observed, particularly the lattice vibrations at lower frequencies, which is intimately correlated to the cationic radius of both divalent and trivalent ions. The results showed that strongly coordinated water and chloride ions besides highly structured hydroxide layers have a direct influence on the stability of the hydrotalcites. It was observed that transition and decomposition temperatures varied largely for different chemical compositions.},
doi = {10.1016/J.MATERRESBULL.2011.05.022},
journal = {Materials Research Bulletin},
issn = {0025-5408},
number = 9,
volume = 46,
place = {United States},
year = {2011},
month = {9}
}