skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Reduction of exportin 6 activity leads to actin accumulation via failure of RanGTP restoration and NTF2 sequestration in the nuclei of senescent cells

Abstract

We have previously reported that G-actin accumulation in nuclei is a universal phenomenon of cellular senescence. By employing primary culture of human diploid fibroblast (HDF) and stress-induced premature senescence (SIPS), we explored whether the failure of actin export to cytoplasm is responsible for actin accumulation in nuclei of senescent cells. Expression of exportin 6 (Exp6) and small G-protein, Ran, was significantly reduced in the replicative senescence, but not yet in SIPS, whereas nuclear import of actin by cofilin was already increased in SIPS. After treatment of young HDF cells with H{sub 2}O{sub 2}, rapid reduction of nuclear RanGTP was observed along with cytoplasmic increase of RanGDP. Furthermore, significantly reduced interaction of Exp6 with RanGTP was found by GST-Exp6 pull-down analysis. Failure of RanGTP restoration was accompanied with inhibition of ATP synthesis and NTF2 sequestration in the nuclei along with accordant change of senescence morphology. Indeed, knockdown of Exp6 expression significantly increased actin molecule in the nuclei of young HDF cells. Therefore, actin accumulation in nuclei of senescent cells is most likely due to the failure of RanGTP restoration with ATP deficiency and NTF2 accumulation in nuclei, which result in the decrease of actin export via Exp6 inactivation, in addition tomore » actin import by cofilin activation.« less

Authors:
; ;
Publication Date:
OSTI Identifier:
22212105
Resource Type:
Journal Article
Resource Relation:
Journal Name: Experimental Cell Research; Journal Volume: 317; Journal Issue: 7; Other Information: Copyright (c) 2010 Elsevier Science B.V., Amsterdam, The Netherlands, All rights reserved.; Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
60 APPLIED LIFE SCIENCES; ACTIN; ATP; CELL NUCLEI; CYTOPLASM; FIBROBLASTS; HYDROGEN PEROXIDE; INACTIVATION; INHIBITION; MORPHOLOGY; SALTS

Citation Formats

Park, Su Hyun, Park, Tae Jun, and Lim, In Kyoung, E-mail: iklim@ajou.ac.kr. Reduction of exportin 6 activity leads to actin accumulation via failure of RanGTP restoration and NTF2 sequestration in the nuclei of senescent cells. United States: N. p., 2011. Web. doi:10.1016/J.YEXCR.2010.12.023.
Park, Su Hyun, Park, Tae Jun, & Lim, In Kyoung, E-mail: iklim@ajou.ac.kr. Reduction of exportin 6 activity leads to actin accumulation via failure of RanGTP restoration and NTF2 sequestration in the nuclei of senescent cells. United States. doi:10.1016/J.YEXCR.2010.12.023.
Park, Su Hyun, Park, Tae Jun, and Lim, In Kyoung, E-mail: iklim@ajou.ac.kr. Fri . "Reduction of exportin 6 activity leads to actin accumulation via failure of RanGTP restoration and NTF2 sequestration in the nuclei of senescent cells". United States. doi:10.1016/J.YEXCR.2010.12.023.
@article{osti_22212105,
title = {Reduction of exportin 6 activity leads to actin accumulation via failure of RanGTP restoration and NTF2 sequestration in the nuclei of senescent cells},
author = {Park, Su Hyun and Park, Tae Jun and Lim, In Kyoung, E-mail: iklim@ajou.ac.kr},
abstractNote = {We have previously reported that G-actin accumulation in nuclei is a universal phenomenon of cellular senescence. By employing primary culture of human diploid fibroblast (HDF) and stress-induced premature senescence (SIPS), we explored whether the failure of actin export to cytoplasm is responsible for actin accumulation in nuclei of senescent cells. Expression of exportin 6 (Exp6) and small G-protein, Ran, was significantly reduced in the replicative senescence, but not yet in SIPS, whereas nuclear import of actin by cofilin was already increased in SIPS. After treatment of young HDF cells with H{sub 2}O{sub 2}, rapid reduction of nuclear RanGTP was observed along with cytoplasmic increase of RanGDP. Furthermore, significantly reduced interaction of Exp6 with RanGTP was found by GST-Exp6 pull-down analysis. Failure of RanGTP restoration was accompanied with inhibition of ATP synthesis and NTF2 sequestration in the nuclei along with accordant change of senescence morphology. Indeed, knockdown of Exp6 expression significantly increased actin molecule in the nuclei of young HDF cells. Therefore, actin accumulation in nuclei of senescent cells is most likely due to the failure of RanGTP restoration with ATP deficiency and NTF2 accumulation in nuclei, which result in the decrease of actin export via Exp6 inactivation, in addition to actin import by cofilin activation.},
doi = {10.1016/J.YEXCR.2010.12.023},
journal = {Experimental Cell Research},
number = 7,
volume = 317,
place = {United States},
year = {Fri Apr 15 00:00:00 EDT 2011},
month = {Fri Apr 15 00:00:00 EDT 2011}
}
  • The accumulation of 8-hydroxy-2'-deoxyguanosine (8-OH-dG) exemplifies oxidative DNA injury, which is strongly implicated in ageing. We show that human peritoneal mesothelial cells (HPMCs) from donors >75 years have lower proliferative capacity but increased 8-OH-dG content compared with cells from individuals <25 years. We detected a positive relationship between the donor's age and the 8-OH-dG level in early-passage HPMCs, and an inverse relationship between those 8-OH-dG levels and subsequent replicative lifespan of HPMCs (n = 30). In early-passage cells from donors >75 years, the repair of oxidant-induced 8-OH-dG was delayed compared to cells from donors <25 years. This was coupled withmore » prolonged removal of reactive oxygen species and faster decline in superoxide dismutase activity. Similar effects were observed in HPMCs rendered senescent in vitro. These results indicate that increased 8-OH-dG levels in HPMCs from aged individuals may reflect the in vivo presence of senescent cells with increased vulnerability to oxidative stress-induced DNA damage.« less
  • Labeling red blood cells with Na/sub 2//sup 51/CrO/sub 4/ enabled us to study certain aspects of red cell survival and sequestration from the circulation. As a random labeling procedure, however, the /sup 51/Cr method has certain limitations. Therefore, we developed a cohort labeling method using /sup 75/Se-methionine as a two-rat procedure. This gives a clear pulse-labeled population of rat red cells to study the dynamics of sequestration. With this labeling procedure, it was possible to demonstrate that 1) there is an increase in the density of red cells with age, 2) a significant sequestration of red cells from the circulationmore » is apparent at the end of 48 days and essentially is complete at the end of 60 days, 3) there is a corresponding uptake of senescent red cells in the spleen, which peaks at 55 days, and 4) the 60-day end point is sharper and is more definitive when the specific activity (cpm per red blood cell) of the labeled red cells in the spleen is compared to that of the red cells still in the circulation. Asialo red cells, obtained by removal of sialic acid with sialidase, frequently have been used as a model for the study of sequestration of senescent red cells. With the technique herein described, it was possible to show that while asialo red cells will inhibit the uptake of labeled asialo red cells, they have no effect on the sequestration of senescent red cells. Presumably, different sites and mechanisms of sequestration are involved.« less
  • Research highlights: {yields} Decreased expression of Nup107 in aged cells and organs. {yields} Depletion of Nup107 results in impaired nuclear translocation of p-ERK. {yields} Depletion of Nup107 affects downstream effectors of ERK signaling. {yields} Depletion of Nup107 inhibits cell proliferation of oligodendroglioma cells. -- Abstract: Hypo-responsiveness to growth factors is a fundamental feature of cellular senescence. In this study, we found markedly decreased level of Nup107, a key scaffold protein in nuclear pore complex assembly, in senescent human diploid fibroblasts as well as in organs of aged mice. Depletion of Nup107 by specific siRNA in young human diploid fibroblasts preventedmore » the effective nuclear translocation of phosphorylated extracellular signal-regulated kinase (ERK) following epidermal growth factor (EGF) stimulation, and decreased the expression of c-Fos in consequence. The disturbances in ERK signaling in Nup107 depleted cells closely mirror the similar changes in senescent cells. Knockdown of Nup107 in anaplastic oligodendroglioma cells caused cell death, rather than growth retardation, indicating a greater sensitivity to Nup107 depletion in cancer cells than in normal cells. These findings support the notion that Nup107 may contribute significantly to the regulation of cell fate in aged and transformed cells by modulating nuclear trafficking of signal molecules.« less
  • The uptake of low density lipoprotein (LDL) by cultured mouse macrophages was markedly promoted by isolated rat mast cell granules present in the culture medium. The granule-mediated uptake of /sup 125/I-LDL enhanced the rate of cholesteryl ester synthesis in the macrophages, the result being accumulation of cholesteryl esters in these cells. Binding of LDL to the granules was essential for the granule-mediated uptake of LDL by macrophages, for the uptake process was prevented by treating the granules with avidin or protamine chloride or by treating LDL with 1,2-cyclohexanedione, all of which inhibit the binding of LDL to the granules. Inhibitionmore » of granule phagocytosis by the macrophages with cytochalasin B also abolished the granule-mediated uptake of LDL. Finally, mouse macrophage monolayers and LDL were incubated in the presence of isolated rat serosal mast cells. Stimulation of the mast cells with compound 48/80, a degranulating agent, resulted in dose-dependent release of secretory granules from the mast cells and a parallel increase in /sup 14/C cholesteryl ester synthesis in the macrophages. The results show that, in this in vitro model, the sequence of events leading to accumulation of cholesteryl esters in macrophages involves initial stimulation of mast cells, subsequent release of their secretory granules, binding of LDL to the exocytosed granules, and, finally, phagocytosis of the LDL-containing granules by macrophages.« less
  • Par-4 (prostate apoptosis response-4) sensitizes cells to apoptotic stimuli, but the exact mechanisms are still poorly understood. Using Par-4 as bait in a yeast two-hybrid screen, we identified Amida as a novel interaction partner, a ubiquitously expressed protein which has been suggested to be involved in apoptotic processes. Complex formation of Par-4 and Amida occurs in vitro and in vivo and is mediated via the C-termini of both proteins, involving the leucine zipper of Par-4. Amida resides mainly in the nucleus but displays nucleo-cytoplasmic shuttling in heterokaryons. Upon coexpression with Par-4 in REF52.2 cells, Amida translocates to the cytoplasm andmore » is recruited to actin filaments by Par-4, resulting in enhanced induction of apoptosis. The synergistic effect of Amida/Par-4 complexes on the induction of apoptosis is abrogated when either Amida/Par-4 complex formation or association of these complexes with the actin cytoskeleton is impaired, indicating that the Par-4-mediated relocation of Amida to the actin cytoskeleton is crucial for the pro-apoptotic function of Par-4/Amida complexes in REF52.2 cells. The latter results in enhanced phosphorylation of the regulatory light chain of myosin II (MLC) as has previously been shown for Par-4-mediated recruitment of DAP-like kinase (Dlk), suggesting that the recruitment of nuclear proteins involved in the regulation of apoptotic processes to the actin filament system by Par-4 represents a potent mechanism how Par-4 can trigger apoptosis.« less