skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Proliferation and motility of HaCaT keratinocyte derivatives is enhanced by fibroblast nemosis

Abstract

The role of paracrine tumor-stroma regulation in the progression of cancer is under intense investigation. Activated fibroblasts are key components of the tumor microenvironment providing the soluble factors mediating the regulation. Nemosis is an experimental model to study these parameters: formation of a multicellular spheroid activates fibroblasts and leads to increased production of soluble factors involved in the promotion of growth and motility. Role of nemosis was investigated in the tumorigenesis of HaCaT derivatives representing skin carcinoma progression. Conditioned medium from fibroblast spheroids increased proliferation rate of HaCaT derivatives. Expression of proliferation marker Ki-67 increased significantly in benign A5 and low-grade malignant II-4 cells, but did not further increase in the metastatic RT3 cells. Expression of p63, keratinocyte stem cell marker linked to cancer progression, was augmented by medium from nemotic fibroblasts; this increase was also seen in RT3 cells. Scratch-wound healing of the keratinocytes was enhanced in response to fibroblast nemosis. Neutralizing antibodies against growth factors inhibited wound healing to some extent; the response varied between benign and malignant keratinocytes. Migration and invasion were enhanced by conditioned medium from nemotic fibroblasts in benign and low-grade malignant cells. RT3 keratinocyte migration was further augmented, but invasion was not, indicating theirmore » intrinsic capacity to invade. Our data demonstrate that fibroblast nemosis increases proliferation and motility of HaCaT keratinocyte derivatives, and thus nemosis can be used as a model to study the role of soluble factors secreted by fibroblasts in tumor progression.« less

Authors:
 [1];  [1]
  1. Haartman Institute, POB 21, FI-00014 University of Helsinki (Finland)
Publication Date:
OSTI Identifier:
22209878
Resource Type:
Journal Article
Resource Relation:
Journal Name: Experimental Cell Research; Journal Volume: 316; Journal Issue: 10; Other Information: Copyright (c) 2010 Elsevier Science B.V., Amsterdam, The Netherlands, All rights reserved.; Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
60 APPLIED LIFE SCIENCES; ANTIBODIES; BONE MARROW; CARCINOMAS; FIBROBLASTS; FLUORESCENCE; GROWTH FACTORS; HEALING; HEXAGONAL LATTICES; METASTASES; SPHEROIDS; STEM CELLS; WOUNDS

Citation Formats

Raesaenen, Kati, E-mail: kati.rasanen@helsinki.fi, and Vaheri, Antti, E-mail: antti.vaheri@helsinki.fi. Proliferation and motility of HaCaT keratinocyte derivatives is enhanced by fibroblast nemosis. United States: N. p., 2010. Web. doi:10.1016/J.YEXCR.2010.01.020.
Raesaenen, Kati, E-mail: kati.rasanen@helsinki.fi, & Vaheri, Antti, E-mail: antti.vaheri@helsinki.fi. Proliferation and motility of HaCaT keratinocyte derivatives is enhanced by fibroblast nemosis. United States. doi:10.1016/J.YEXCR.2010.01.020.
Raesaenen, Kati, E-mail: kati.rasanen@helsinki.fi, and Vaheri, Antti, E-mail: antti.vaheri@helsinki.fi. 2010. "Proliferation and motility of HaCaT keratinocyte derivatives is enhanced by fibroblast nemosis". United States. doi:10.1016/J.YEXCR.2010.01.020.
@article{osti_22209878,
title = {Proliferation and motility of HaCaT keratinocyte derivatives is enhanced by fibroblast nemosis},
author = {Raesaenen, Kati, E-mail: kati.rasanen@helsinki.fi and Vaheri, Antti, E-mail: antti.vaheri@helsinki.fi},
abstractNote = {The role of paracrine tumor-stroma regulation in the progression of cancer is under intense investigation. Activated fibroblasts are key components of the tumor microenvironment providing the soluble factors mediating the regulation. Nemosis is an experimental model to study these parameters: formation of a multicellular spheroid activates fibroblasts and leads to increased production of soluble factors involved in the promotion of growth and motility. Role of nemosis was investigated in the tumorigenesis of HaCaT derivatives representing skin carcinoma progression. Conditioned medium from fibroblast spheroids increased proliferation rate of HaCaT derivatives. Expression of proliferation marker Ki-67 increased significantly in benign A5 and low-grade malignant II-4 cells, but did not further increase in the metastatic RT3 cells. Expression of p63, keratinocyte stem cell marker linked to cancer progression, was augmented by medium from nemotic fibroblasts; this increase was also seen in RT3 cells. Scratch-wound healing of the keratinocytes was enhanced in response to fibroblast nemosis. Neutralizing antibodies against growth factors inhibited wound healing to some extent; the response varied between benign and malignant keratinocytes. Migration and invasion were enhanced by conditioned medium from nemotic fibroblasts in benign and low-grade malignant cells. RT3 keratinocyte migration was further augmented, but invasion was not, indicating their intrinsic capacity to invade. Our data demonstrate that fibroblast nemosis increases proliferation and motility of HaCaT keratinocyte derivatives, and thus nemosis can be used as a model to study the role of soluble factors secreted by fibroblasts in tumor progression.},
doi = {10.1016/J.YEXCR.2010.01.020},
journal = {Experimental Cell Research},
number = 10,
volume = 316,
place = {United States},
year = 2010,
month = 6
}
  • Malignant cells when grown in suspension, as a rule, proliferate and can form spheroids that have been used as a model of tumor nodules, micrometastases and avascular tumors. In contrast, normal adherent cells cannot be stimulated to grow as multicellular aggregates. Now, recent results show that normal fibroblasts if forced to cluster (spheroid formation) do not grow but undergo a new pathway of cell activation (nemosis) leading to a massive proinflammatory, proteolytic and growth factor response. The clustering and activation are initiated by fibronectin-integrin interaction. The activated fibroblasts are able to modulate the behavior of cancer cells and, furthermore malignantmore » cells boost this activation even further. In this model, the activation of fibroblasts terminates in programmed necrosis-like cell death. Activation of the tumor stroma, especially of fibroblasts, is of critical importance for tumor progression, although mechanisms leading to their activation are still largely uncharacterized. In summary, our results suggest that this kind of fibroblast activation (nemosis) may be involved in pathological conditions such as inflammation and cancer.« less
  • Increasing evidence points to a central link between inflammation and activation of the stroma, especially of fibroblasts therein. However, the mechanisms leading to such activation mostly remain undescribed. We have previously characterized a novel type of fibroblast activation (nemosis) where clustered fibroblasts upregulated the production of cyclooxygenase-2, secretion of prostaglandins, proteinases, chemotactic cytokines, and hepatocyte growth factor (HGF), and displayed activated nuclear factor-{kappa}B. Now we show that nemosis drives angiogenic responses of endothelial cells. In addition to HGF, nemotic fibroblasts secreted vascular endothelial growth factor (VEGF), and conditioned medium from spheroids promoted sprouting and networking of human umbilical venous endothelialmore » cells (HUVEC). The response was partly inhibited by function-blocking antibodies against HGF and VEGF. Conditioned nemotic fibroblast medium promoted closure of HUVEC and human dermal microvascular endothelial cell monolayer wounds, by increasing the motility of the endothelial cells. Wound closure in HUVEC cells was partly inhibited by the antibodies against HGF. The stromal microenvironment regulates wound healing responses and often promotes tumorigenesis. Nemosis offers clues to the activation process of stromal fibroblasts and provides a model to study the part they play in angiogenesis-related conditions, as well as possibilities for therapeutical approaches desiring angiogenesis in tissue.« less
  • Highlights: Black-Right-Pointing-Pointer A subpopulation of syntaxin4 localizes extracellularly in the keratinocytes. Black-Right-Pointing-Pointer Epimorphin and syntaxin4 confer the resistance to the oxidative stress. Black-Right-Pointing-Pointer Epimorphin suppresses and syntaxin4 accelerates the CCE formation. Black-Right-Pointing-Pointer The antagonistic peptide to syntaxin4 blocks the syntaxin4-dependent CCE formation. -- Abstract: Syntaxin4 belongs to t-SNARE protein family and functions as a vesicular fusion mediator in the plasma membrane in a wide variety of cell types. This protein resembles another family member, epimorphin, a subpopulation of which has been shown to be secreted extracellularly in order to exert signaling functions. Here, we demonstrate the secretion of syntaxin4 viamore » a non-classical pathway and its extracellular functions by using the functionally normal keratinocyte HaCaT. Extracellularly presented syntaxin4 appeared to elicit many cell responses similar to epimorphin with an important exception: it clearly facilitated keratinocyte cornification. The circularized peptide ST4n1 was synthesized from the putative functional core of syntaxin4 (a.a. 103-108), which is equivalent to the previously generated antagonist of epimorphin, and neutralized this contradictory effect. Intriguingly, an epimorphin mutant (EP4M) in which the functional core was replaced by that of syntaxin4 behaved like epimorphin, which was again antagonized by ST4n1. Electrophoresis-based analyses demonstrated the distinct structure of syntaxin4 compared to epimorphin or EP4M. These results revealed, for the first time, the extracellular role of syntaxin4 and shed light on the division of the extracellular effects exerted by epimorphin and syntaxin4 on keratinocyte cornification.« less
  • Keratinocyte growth factor (KGF/FGF7) and fibroblast growth factor 10 (FGF10/KGF2) regulate keratinocyte proliferation and differentiation by binding to the tyrosine kinase KGF receptor (KGFR). KGF induces keratinocyte motility and cytoskeletal rearrangement, whereas a direct role of FGF10 on keratinocyte migration is not clearly established. Here we analyzed the motogenic activity of FGF10 and KGF on human keratinocytes. Migration assays and immunofluorescence of actin cytoskeleton revealed that FGF10 is less efficient than KGF in promoting migration and exerts a delayed effect in inducing lamellipodia and ruffles formation. Both growth factors promoted phosphorylation and subsequent membrane translocation of cortactin, an F-actin bindingmore » protein involved in cell migration; however, FGF10-induced cortactin phosphorylation was reduced, more transient and delayed with respect to that promoted by KGF. Cortactin phosphorylation induced by both growth factors was Src-dependent, while its membrane translocation and cell migration were blocked by either Src and PI3K inhibitors, suggesting that both pathways are involved in KGF- and FGF10-dependent motility. Furthermore, siRNA-mediated downregulation of cortactin inhibited KGF- and FGF10-induced migration. These results indicate that cortactin is involved in keratinocyte migration promoted by both KGF and FGF10.« less
  • Previous studies showed that CD151-null mice have a skin wound healing deficit. To gain an understanding of the role of CD151 in re-epithelialisation and dermal contraction, keratinocyte and fibroblast functions were assayed. Primary CD151-null keratinocytes displayed defective migration on Matrigel (a basement membrane equivalent) and laminin-332, the primary adhesion component of basement membranes, but not on collagen-I. Adhesion, spreading and proliferation were also deficient on laminin-332, but not collagen-I. The data suggest that loss of CD151 impairs the function of its primary interaction partners, integrin {alpha}3{beta}1- and/or {alpha}6{beta}4 which bind to laminin-332. Skin fibroblasts also produce CD151 mRNA. CD151-null fibroblastsmore » migrated significantly faster on collagen I than wild type fibroblasts, confirming that they possess functional collagen receptors. However, no significant decrease in the ability of CD151-null fibroblasts to cause contraction in floating collagen gel assays in response to transforming growth factor beta-1 (TGF-{beta}1) or platelet derived growth factor (PDGF-BB) was observed, nor was there an effect on fibroblast adhesion or proliferation on collagen-I. The data implicate CD151 as a facilitator of laminin-332-mediated keratinocyte functions that impact on the re-epithelialisation process intrinsic to wound healing and further suggest a potential novel role for CD151 in fibroblast migration.« less