skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: KAPPA DISTRIBUTION MODEL FOR HARD X-RAY CORONAL SOURCES OF SOLAR FLARES

Journal Article · · Astrophysical Journal
; ; ; ;  [1]
  1. Space Sciences Laboratory, University of California Berkeley (United States)

Solar flares produce hard X-ray emission, the photon spectrum of which is often represented by a combination of thermal and power-law distributions. However, the estimates of the number and total energy of non-thermal electrons are sensitive to the determination of the power-law cutoff energy. Here, we revisit an 'above-the-loop' coronal source observed by RHESSI on 2007 December 31 and show that a kappa distribution model can also be used to fit its spectrum. Because the kappa distribution has a Maxwellian-like core in addition to a high-energy power-law tail, the emission measure and temperature of the instantaneous electrons can be derived without assuming the cutoff energy. Moreover, the non-thermal fractions of electron number/energy densities can be uniquely estimated because they are functions of only the power-law index. With the kappa distribution model, we estimated that the total electron density of the coronal source region was {approx}2.4 Multiplication-Sign 10{sup 10} cm{sup -3}. We also estimated without assuming the source volume that a moderate fraction ({approx}20%) of electrons in the source region was non-thermal and carried {approx}52% of the total electron energy. The temperature was 28 MK, and the power-law index {delta} of the electron density distribution was -4.3. These results are compared to the conventional power-law models with and without a thermal core component.

OSTI ID:
22167085
Journal Information:
Astrophysical Journal, Vol. 764, Issue 1; Other Information: Country of input: International Atomic Energy Agency (IAEA); ISSN 0004-637X
Country of Publication:
United States
Language:
English