skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Anisotropic thermal properties of the polar crystal Cs{sub 2}TeMo{sub 3}O{sub 12}

Journal Article · · Journal of Solid State Chemistry
; ; ;  [1];  [1]
  1. State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, Shandong (China)

A Cs{sub 2}TeMo{sub 3}O{sub 12} single crystal with dimensions of 17 mm Multiplication-Sign 17 mm Multiplication-Sign 18 mm was grown using the top-seeded solution growth method. Thermal properties, including thermal expansion, specific heat, thermal diffusivity and thermal conductivity, were investigated as a function of temperature. The average linear thermal expansion coefficients along different crystallographic directions were measured to be {alpha}{sub a}=7.34 Multiplication-Sign 10{sup -6} K{sup -1} and {alpha}{sub c}=32.02 Multiplication-Sign 10{sup -6} K{sup -1} over the temperature range of 30-430 Degree-Sign C. The specific heat was measured to be 0.400-0.506 J g{sup -1} K{sup -1} from 22 Degree-Sign C to 440 Degree-Sign C. The thermal conductivity was calculated to be 1.86 and 0.76 W m{sup -1} K{sup -1} at 22 Degree-Sign C along the a and c axes, respectively. With increasing temperature from 22 to 430 Degree-Sign C, the thermal conductivity decreases by 33.0% along the a axis, while it decreases by 18.5% below 200 Degree-Sign C and then remains unchanged along the c axis. The relationship between structure and the thermal properties is also discussed. - Graphical Abstract: Centimeter-sized crystals of polar Cs{sub 2}TeMo{sub 3}O{sub 12} were grown using the top-seeded solution growth method. The relative large anisotropy in thermal expansion and thermal conductivity of Cs{sub 2}TeMo{sub 3}O{sub 12} is attributable to its layered structure. Highlights: Black-Right-Pointing-Pointer Cs{sub 2}TeMo{sub 3}O{sub 12} single crystals with dimensions of 17 Multiplication-Sign 17 Multiplication-Sign 18 mm{sup 3} were grown. Black-Right-Pointing-Pointer Thermal properties of Cs{sub 2}TeMo{sub 3}O{sub 12} were studied as a function of temperature. Black-Right-Pointing-Pointer The thermal expansion anisotropy of Cs{sub 2}TeMo{sub 3}O{sub 12} is explained using its structure. Black-Right-Pointing-Pointer To protect Cs{sub 2}TeMo{sub 3}O{sub 12} crystal, a small cooling rate should be used during growth. Black-Right-Pointing-Pointer A large temperature gradient should be avoided during processing and application.

OSTI ID:
22149894
Journal Information:
Journal of Solid State Chemistry, Vol. 195; Other Information: Copyright (c) 2011 Elsevier Science B.V., Amsterdam, The Netherlands, All rights reserved.; Country of input: International Atomic Energy Agency (IAEA); ISSN 0022-4596
Country of Publication:
United States
Language:
English