skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Synthesis, crystal structure and properties of a novel tetra-nuclear Cu complex of ANPyO

Journal Article · · Journal of Solid State Chemistry
 [1];  [1]
  1. School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094 (China)

A transition metal Cu complex with 2,6-diamino-3,5-dinitropyridine-N-oxide (ANPyO) ligand has been synthesized and its crystal structure has been analyzed by X-ray diffraction methods. The crystal belongs to Triclinic system with space group P-1. The cell parameters are a=8.6710(17) nm, b=11.226(2) nm, c=18.741(4) nm, {alpha}=98.26(3), {beta}=102.60(3), {gamma}=109.17(3), V=1635.1(6) nm{sup 3}, D{sub c}=1.957 g/cm{sup 3}, {mu}=2.663 mm{sup -1}, F(000)=968, Z=2, R{sub 1}=0.0764, WR{sub 2}=0.1608. The thermal decomposition process of the title complex was studied by means of the TG-DTG and DSC at a heating rate of 20 K/min. It consists of two slow endothermic peaks and one violent exothermic peak with 37.22% residues. The apparent activation energy and pre-exponential factor of the complex in thermal decomposition process were calculated by means of the Kissinger method and Ozawa-Doyle method. The thermal decomposition of AP was accelerated due to the catalyst of the complex, it suggests that the complex can provide theoretical support to further performance study as it is added to the propellant formulations to regulate the burning rate. - Graphical abstract: A novel tetra-nuclear Cu complex of ANPyO was synthesized and its molecular structure was measured. Highlights: Black-Right-Pointing-Pointer We have synthesized and characterized a new tetra-nuclear Cu complex. Black-Right-Pointing-Pointer We have measured its molecular structure and thermal decomposition. Black-Right-Pointing-Pointer A special coordination mode between ligand and central copper atoms has been obtained. Black-Right-Pointing-Pointer It provides theoretical support to further performance study as energetic catalyst.

OSTI ID:
22131177
Journal Information:
Journal of Solid State Chemistry, Vol. 197; Other Information: Copyright (c) 2012 Elsevier Science B.V., Amsterdam, The Netherlands, All rights reserved.; Country of input: International Atomic Energy Agency (IAEA); ISSN 0022-4596
Country of Publication:
United States
Language:
English