skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Using in situ X-ray absorption spectroscopy to study the local structure and oxygen ion conduction mechanism in (La{sub 0.6}Sr{sub 0.4})(Co{sub 0.2}Fe{sub 0.8})O{sub 3-{delta}}

Journal Article · · Journal of Solid State Chemistry
 [1];  [2]
  1. AGC SeimiChemical Co., Ltd., 3-2-10 Chigasaki, Chigasaki City, Kanagawa 253-8585 (Japan)
  2. Department of Materials Science and Engineering, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya-city, Aichi 466-8555 (Japan)

To study the local structure and oxygen ion conduction mechanism in (La{sub 0.6}Sr{sub 0.4})(Co{sub 0.2}Fe{sub 0.8})O{sub 3-{delta}} (LSCF) as a function of the oxygen partial pressure (P(O{sub 2})), in situ the Co and Fe K-edge X-ray absorption spectroscopy (XAS) was measured at elevated temperatures of 900 and 1000 K. The reduction of the Co and Fe valence, i.e., the oxygen content (3-{delta}) in LSCF, followed the change of P(O{sub 2}) from 1 to 10{sup -4} atm during{approx}4000 s. The quantitative analysis of the X-ray absorption near edge structure (XANES) and the extended X-ray absorption fine structure (EXAFS) indicated that the Fe valence was higher than the Co valence at oxidative condition ({delta} Almost-Equal-To 0) in LSCF. Whereas the Co valence decreased more than the Fe valence after reduction of P(O{sub 2}) at both 900 and 1000 K. From the relaxation plots of the valence and the oxygen content (3-{delta}) for Co and Fe after changing P(O{sub 2}), we successfully determined D{sub chem} and E{sub a} of an oxygen ion migration around Co and Fe in LSCF. A structural model with and without oxygen vacancies and an oxygen ion conduction mechanism for LSCF are proposed based on these results. - Graphical abstract: A structural model with and without oxygen vacancies, and the oxygen ion conduction mechanism of LSCF were speculated. In other words, oxygen vacancies would form more preferentially around Co than Fe from the results of in situ XAS analysis during reduction, and oxygen ions needs to pass through at the vicinity of Fe from the results of D{sub chem} and E{sub a}. Highlights: Black-Right-Pointing-Pointer Study of the oxygen ion conduction mechanism in (La{sub 0.6}Sr{sub 0.4})(Co{sub 0.2}Fe{sub 0.8})O{sub 3-{delta}} (LSCF). Black-Right-Pointing-Pointer Using in situ X-ray absorption for study of valence and oxygen diffusion coefficient. Black-Right-Pointing-Pointer The oxygen vacancies should be preferentially localized around Co in LSCF. Black-Right-Pointing-Pointer The values of the dynamics parameters for Co and Fe are close to each other.

OSTI ID:
22131098
Journal Information:
Journal of Solid State Chemistry, Vol. 192; Other Information: Copyright (c) 2012 Elsevier Science B.V., Amsterdam, The Netherlands, All rights reserved.; Country of input: International Atomic Energy Agency (IAEA); ISSN 0022-4596
Country of Publication:
United States
Language:
English