skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: THE ACS NEARBY GALAXY SURVEY TREASURY. XI. THE REMARKABLY UNDISTURBED NGC 2403 DISK

Abstract

We present detailed analysis of color-magnitude diagrams of NGC 2403, obtained from a deep (m {approx}< 28) Hubble Space Telescope (HST) Wide Field Planetary Camera 2 observation of the outer disk of NGC 2403, supplemented by several shallow (m {approx}< 26) HST Advanced Camera for Surveys fields. We derive the spatially resolved star formation history of NGC 2403 out to 11 disk scale lengths. In the inner portions of the galaxy, we compare the recent star formation rates (SFRs) we derive from the resolved stars with those measured using GALEX FUV + Spitzer 24{mu} fluxes, finding excellent agreement between the methods. Our measurements also show that the radial gradient in recent SFR mirrors the disk exponential profile to 11 scale lengths with no break, extending to SFR densities a factor of {approx}100 lower than those that can be measured with GALEX and Spitzer ({approx}2 Multiplication-Sign 10{sup -6} M{sub Sun} yr{sup -1} kpc{sup -2}). Furthermore, we find that the cumulative stellar mass of the disk was formed at similar times at all radii. We compare these characteristics of NGC 2403 to those of its ''morphological twins'', NGC 300 and M 33, showing that the structure and age distributions of the NGCmore » 2403 disk are more similar to those of the relatively isolated system NGC 300 than to those of the Local Group analog M 33. We also discuss the environments and HI morphologies of these three nearby galaxies, comparing them to integrated light studies of larger samples of more distant galaxy disks. Taken together, the physical properties and evolutionary history of NGC 2403 suggest that the galaxy has had no close encounters with other M 81 group members and may be falling into the group for the first time.« less

Authors:
; ; ;  [1];  [2];  [3]
  1. Department of Astronomy, Box 351580, University of Washington, Seattle, WA 98195 (United States)
  2. Raytheon, 1151 E. Hermans Road, Tucson, AZ 85706 (United States)
  3. Department of Astronomy, University of Minnesota, 116 Church St. SE, Minneapolis, MN 55455 (United States)
Publication Date:
OSTI Identifier:
22126976
Resource Type:
Journal Article
Resource Relation:
Journal Name: Astrophysical Journal; Journal Volume: 765; Journal Issue: 2; Other Information: Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
79 ASTROPHYSICS, COSMOLOGY AND ASTRONOMY; ASTRONOMY; ASTROPHYSICS; CAMERAS; COLOR; COMPARATIVE EVALUATIONS; DENSITY; GALACTIC EVOLUTION; GALAXIES; MASS; STAR EVOLUTION; STARS; TELESCOPES

Citation Formats

Williams, Benjamin F., Dalcanton, Julianne J., Stilp, Adrienne, Radburn-Smith, David, Dolphin, Andrew, and Skillman, Evan D., E-mail: ben@astro.washington.edu, E-mail: jd@astro.washington.edu, E-mail: adrienne@astro.washington.edu, E-mail: dolphin@raytheon.com, E-mail: skillman@astro.umn.edu. THE ACS NEARBY GALAXY SURVEY TREASURY. XI. THE REMARKABLY UNDISTURBED NGC 2403 DISK. United States: N. p., 2013. Web. doi:10.1088/0004-637X/765/2/120.
Williams, Benjamin F., Dalcanton, Julianne J., Stilp, Adrienne, Radburn-Smith, David, Dolphin, Andrew, & Skillman, Evan D., E-mail: ben@astro.washington.edu, E-mail: jd@astro.washington.edu, E-mail: adrienne@astro.washington.edu, E-mail: dolphin@raytheon.com, E-mail: skillman@astro.umn.edu. THE ACS NEARBY GALAXY SURVEY TREASURY. XI. THE REMARKABLY UNDISTURBED NGC 2403 DISK. United States. doi:10.1088/0004-637X/765/2/120.
Williams, Benjamin F., Dalcanton, Julianne J., Stilp, Adrienne, Radburn-Smith, David, Dolphin, Andrew, and Skillman, Evan D., E-mail: ben@astro.washington.edu, E-mail: jd@astro.washington.edu, E-mail: adrienne@astro.washington.edu, E-mail: dolphin@raytheon.com, E-mail: skillman@astro.umn.edu. 2013. "THE ACS NEARBY GALAXY SURVEY TREASURY. XI. THE REMARKABLY UNDISTURBED NGC 2403 DISK". United States. doi:10.1088/0004-637X/765/2/120.
@article{osti_22126976,
title = {THE ACS NEARBY GALAXY SURVEY TREASURY. XI. THE REMARKABLY UNDISTURBED NGC 2403 DISK},
author = {Williams, Benjamin F. and Dalcanton, Julianne J. and Stilp, Adrienne and Radburn-Smith, David and Dolphin, Andrew and Skillman, Evan D., E-mail: ben@astro.washington.edu, E-mail: jd@astro.washington.edu, E-mail: adrienne@astro.washington.edu, E-mail: dolphin@raytheon.com, E-mail: skillman@astro.umn.edu},
abstractNote = {We present detailed analysis of color-magnitude diagrams of NGC 2403, obtained from a deep (m {approx}< 28) Hubble Space Telescope (HST) Wide Field Planetary Camera 2 observation of the outer disk of NGC 2403, supplemented by several shallow (m {approx}< 26) HST Advanced Camera for Surveys fields. We derive the spatially resolved star formation history of NGC 2403 out to 11 disk scale lengths. In the inner portions of the galaxy, we compare the recent star formation rates (SFRs) we derive from the resolved stars with those measured using GALEX FUV + Spitzer 24{mu} fluxes, finding excellent agreement between the methods. Our measurements also show that the radial gradient in recent SFR mirrors the disk exponential profile to 11 scale lengths with no break, extending to SFR densities a factor of {approx}100 lower than those that can be measured with GALEX and Spitzer ({approx}2 Multiplication-Sign 10{sup -6} M{sub Sun} yr{sup -1} kpc{sup -2}). Furthermore, we find that the cumulative stellar mass of the disk was formed at similar times at all radii. We compare these characteristics of NGC 2403 to those of its ''morphological twins'', NGC 300 and M 33, showing that the structure and age distributions of the NGC 2403 disk are more similar to those of the relatively isolated system NGC 300 than to those of the Local Group analog M 33. We also discuss the environments and HI morphologies of these three nearby galaxies, comparing them to integrated light studies of larger samples of more distant galaxy disks. Taken together, the physical properties and evolutionary history of NGC 2403 suggest that the galaxy has had no close encounters with other M 81 group members and may be falling into the group for the first time.},
doi = {10.1088/0004-637X/765/2/120},
journal = {Astrophysical Journal},
number = 2,
volume = 765,
place = {United States},
year = 2013,
month = 3
}
  • The ACS Nearby Galaxy Survey Treasury (ANGST) has acquired deep ACS imaging of a field in the outer disk of the large spiral galaxy M81. These data were obtained over a total of 20 Hubble Space Telescope orbits, providing a baseline long enough to reliably identify Cepheid variable stars in the field. Fundamental mode and first overtone types have been distinguished through comparative fits with corresponding Cepheid light curve templates derived from principal component analysis of confirmed Cepheids in the Large Magellanic Cloud (LMC), Small Magellanic Cloud, and Milky Way. A distance modulus of 27.78 {+-} 0.05 {sub r} {+-}more » 0.14 {sub s} with a corresponding distance of 3.60 {+-} 0.23 Mpc has been calculated from a sample of 11 fundamental mode and two first overtone Cepheids (assuming an LMC distance modulus of {mu}{sub LMC} = 18.41 {+-} 0.10 {sub r} {+-} 0.13 {sub s})« less
  • We present HST/WFPC2 observations across the disk of the nearby isolated dwarf S0 galaxy NGC 404, which hosts an extended gas disk. The locations of our fields contain a roughly equal mixture of bulge and disk stars. All of our resolved stellar photometry reaches m {sub F814W} = 26 (M {sub F814W} = -1.4), which covers 2.5 mag of the red giant branch and main-sequence stars with ages <300 Myr. Our deepest field reaches m {sub F814W} = 27.2 (M {sub F814W} = -0.2), sufficient to resolve the red clump and main-sequence stars with ages <500 Myr. Although we detectmore » trace amounts of star formation at times more recent than 10 Gyr ago for all fields, the proportion of red giant stars to asymptotic giants and main-sequence stars suggests that the disk is dominated by an ancient (>10 Gyr) population. Detailed modeling of the color-magnitude diagram suggests that {approx}70% of the stellar mass in the NGC 404 disk formed by z {approx} 2 (10 Gyr ago) and at least {approx}90% formed prior to z {approx} 1 (8 Gyr ago). These results indicate that the stellar populations of the NGC 404 disk are on average significantly older than those of other nearby disk galaxies, suggesting that early- and late-type disks may have different long-term evolutionary histories, not simply differences in their recent star formation rates. Comparisons of the spatial distribution of the young stellar mass and FUV emission in Galaxy Evolution Explorer images show that the brightest FUV regions contain the youngest stars, but that some young stars (<160 Myr) lie outside of these regions. FUV luminosity appears to be strongly affected by both age and stellar mass within individual regions. Finally, we use our measurements to infer the relationship between the star formation rate and the gas density of the disk at previous epochs. We find that most of the history of the NGC 404 disk is consistent with star formation that has decreased with the gas density according to the Schmidt law. However, {approx} 0.5-1 Gyr ago, the star formation rate was unusually low for the inferred gas density, consistent with the possibility that there was a gas accretion event that reignited star formation {approx}0.5 Gyr ago. Such an event could explain why this S0 galaxy hosts an extended gas disk.« less
  • We study the relationship between the field star formation and cluster formation properties in a large sample of nearby dwarf galaxies. We use optical data from the Hubble Space Telescope and from ground-based telescopes to derive the ages and masses of the young (t{sub age} {approx}< 100 Myr) cluster sample. Our data provide the first constraints on two proposed relationships between the star formation rate (SFR) of galaxies and the properties of their cluster systems in the low SFR regime. The data show broad agreement with these relationships, but significant galaxy-to-galaxy scatter exists. In part, this scatter can be accountedmore » for by simulating the small number of clusters detected from stochastically sampling the cluster mass function. However, this stochasticity does not fully account for the observed scatter in our data, suggesting that there may be true variations in the fraction of stars formed in clusters in dwarf galaxies. Comparison of the cluster formation and the brightest cluster in our sample galaxies also provide constraints on cluster destruction models.« less
  • We present a measurement of the age distribution of stars residing in spiral disks and dwarf galaxies. We derive a complete star formation history of the {approx}140 Mpc{sup 3} covered by the volume-limited sample of galaxies in the Advanced Camera for Surveys (ACS) Nearby Galaxy Survey Treasury (ANGST). The total star formation rate density history ({rho}{sub SFR}(t)) is dominated by the large spirals in the volume, although the sample consists mainly of dwarf galaxies. Our {rho}{sub SFR}(t) shows a factor of {approx}3 drop at z {approx} 2, in approximate agreement with results from other measurement techniques. While our results showmore » that the overall {rho}{sub SFR}(t) has decreased since z {approx} 1, the measured rates during this epoch are higher than those obtained from other measurement techniques. This enhanced recent star formation rate appears to be largely due to an increase in the fraction of star formation contained in low-mass disks at recent times. Finally, our results indicate that despite the differences at recent times, the epoch of formation of {approx}50% of the stellar mass in dwarf galaxies was similar to that of {approx}50% of the stellar mass in large spiral galaxies (z {approx}> 2), despite the observed galaxy-to-galaxy diversity among the dwarfs.« less
  • The ACS Nearby Galaxy Survey Treasury (ANGST) is a systematic survey to establish a legacy of uniform multi-color photometry of resolved stars for a volume-limited sample of nearby galaxies (D < 4 Mpc). The survey volume encompasses 69 galaxies in diverse environments, including close pairs, small and large groups, filaments, and truly isolated regions. The galaxies include a nearly complete range of morphological types spanning a factor of {approx}10{sup 4} in luminosity and star formation rate. The survey data consist of images taken with the Advanced Camera for Surveys (ACS) on the Hubble Space Telescope (HST), supplemented with archival datamore » and new Wide Field Planetary Camera 2 (WFPC2) imaging taken after the failure of ACS. Survey images include wide field tilings covering the full radial extent of each galaxy, and single deep pointings in uncrowded regions of the most massive galaxies in the volume. The new wide field imaging in ANGST reaches median 50% completenesses of m {sub F475W} = 28.0 mag, m {sub F606W} = 27.3 mag, and m {sub F814W} = 27.3 mag, several magnitudes below the tip of the red giant branch (TRGB). The deep fields reach magnitudes sufficient to fully resolve the structure in the red clump. The resulting photometric catalogs are publicly accessible and contain over 34 million photometric measurements of >14 million stars. In this paper we present the details of the sample selection, imaging, data reduction, and the resulting photometric catalogs, along with an analysis of the photometric uncertainties (systematic and random), for both ACS and WFPC2 imaging. We also present uniformly derived relative distances measured from the apparent magnitude of the TRGB.« less