skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Linear properties of energetic particle driven geodesic acoustic mode

Journal Article · · Physics of Plasmas
DOI:https://doi.org/10.1063/1.4774410· OSTI ID:22113352
 [1];  [1]
  1. Graduate University for Advanced Studies, Toki 509-5292 (Japan)

Linear properties of energetic particle driven geodesic acoustic mode (EGAM) in the large helical device plasmas are investigated using a hybrid simulation code for a magnetohydrodynamics fluid interacting with energetic particles. It is found that the EGAM is a global mode with the spatially uniform oscillation frequency despite the spatial variation of the local geodesic acoustic mode frequency. The poloidal mode numbers of poloidal velocity fluctuation, plasma density fluctuation, and magnetic fluctuation are m = 0, 1, and 2, respectively. Oscillation frequency, linear growth rate, and spatial width of EGAM are compared for different physics conditions. The EGAM frequency is proportional to the square root of the plasma temperature. The frequency is lower for higher energetic particle {beta} value. The mode spatial width is larger for larger spatial width of the energetic particle distribution and for the reversed shear safety-factor profile than the normal shear profile. It is also found that the EGAM propagates radially outward in the linearly growing phase, and the propagation speed is slower for the spatially broadened modes.

OSTI ID:
22113352
Journal Information:
Physics of Plasmas, Vol. 20, Issue 1; Other Information: (c) 2013 American Institute of Physics; Country of input: International Atomic Energy Agency (IAEA); ISSN 1070-664X
Country of Publication:
United States
Language:
English