skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Severe accident modeling of a PWR core with different cladding materials

Abstract

The MAAP v.4 software has been used to model two severe accident scenarios in nuclear power reactors with three different materials as fuel cladding. The TMI-2 severe accident was modeled with Zircaloy-2 and SiC as clad material and a SBO accident in a Zion-like, 4-loop, Westinghouse PWR was modeled with Zircaloy-2, SiC, and 304 stainless steel as clad material. TMI-2 modeling results indicate that lower peak core temperatures, less H 2 (g) produced, and a smaller mass of molten material would result if SiC was substituted for Zircaloy-2 as cladding. SBO modeling results indicate that the calculated time to RCS rupture would increase by approximately 20 minutes if SiC was substituted for Zircaloy-2. Additionally, when an extended SBO accident (RCS creep rupture failure disabled) was modeled, significantly lower peak core temperatures, less H 2 (g) produced, and a smaller mass of molten material would be generated by substituting SiC for Zircaloy-2 or stainless steel cladding. Because the rate of SiC oxidation reaction with elevated temperature H{sub 2}O (g) was set to 0 for this work, these results should be considered preliminary. However, the benefits of SiC as a more accident tolerant clad material have been shown and additional investigation ofmore » SiC as an LWR core material are warranted, specifically investigations of the oxidation kinetics of SiC in H{sub 2}O (g) over the range of temperatures and pressures relevant to severe accidents in LWR 's. (authors)« less

Authors:
 [1]; ;  [2]
  1. Westinghouse Electric Company LLC, 5801 Bluff Road, Columbia, SC 29209 (United States)
  2. Fauske and Associates, Inc., 16W070 83rd Street, Burr Ridge, IL 60527 (United States)
Publication Date:
Research Org.:
American Nuclear Society, 555 North Kensington Avenue, La Grange Park, IL 60526 (United States)
OSTI Identifier:
22107887
Resource Type:
Conference
Resource Relation:
Conference: ICAPP '12: 2012 International Congress on Advances in Nuclear Power Plants, Chicago, IL (United States), 24-28 Jun 2012; Other Information: Country of input: France; 16 refs.; Related Information: In: Proceedings of the 2012 International Congress on Advances in Nuclear Power Plants - ICAPP '12| 2799 p.
Country of Publication:
United States
Language:
English
Subject:
21 SPECIFIC NUCLEAR REACTORS AND ASSOCIATED PLANTS; CLADDING; COMPUTER CODES; HYPOTHETICAL ACCIDENTS; NUCLEAR FUELS; NUCLEAR POWER PLANTS; PWR TYPE REACTORS; REACTOR ACCIDENT SIMULATION; REACTOR CORES; RUPTURES; SILICON CARBIDES; STAINLESS STEEL-304; ZIRCALOY 2

Citation Formats

Johnson, S. C., Henry, R. E., and Paik, C. Y. Severe accident modeling of a PWR core with different cladding materials. United States: N. p., 2012. Web.
Johnson, S. C., Henry, R. E., & Paik, C. Y. Severe accident modeling of a PWR core with different cladding materials. United States.
Johnson, S. C., Henry, R. E., and Paik, C. Y. Sun . "Severe accident modeling of a PWR core with different cladding materials". United States.
@article{osti_22107887,
title = {Severe accident modeling of a PWR core with different cladding materials},
author = {Johnson, S. C. and Henry, R. E. and Paik, C. Y.},
abstractNote = {The MAAP v.4 software has been used to model two severe accident scenarios in nuclear power reactors with three different materials as fuel cladding. The TMI-2 severe accident was modeled with Zircaloy-2 and SiC as clad material and a SBO accident in a Zion-like, 4-loop, Westinghouse PWR was modeled with Zircaloy-2, SiC, and 304 stainless steel as clad material. TMI-2 modeling results indicate that lower peak core temperatures, less H 2 (g) produced, and a smaller mass of molten material would result if SiC was substituted for Zircaloy-2 as cladding. SBO modeling results indicate that the calculated time to RCS rupture would increase by approximately 20 minutes if SiC was substituted for Zircaloy-2. Additionally, when an extended SBO accident (RCS creep rupture failure disabled) was modeled, significantly lower peak core temperatures, less H 2 (g) produced, and a smaller mass of molten material would be generated by substituting SiC for Zircaloy-2 or stainless steel cladding. Because the rate of SiC oxidation reaction with elevated temperature H{sub 2}O (g) was set to 0 for this work, these results should be considered preliminary. However, the benefits of SiC as a more accident tolerant clad material have been shown and additional investigation of SiC as an LWR core material are warranted, specifically investigations of the oxidation kinetics of SiC in H{sub 2}O (g) over the range of temperatures and pressures relevant to severe accidents in LWR 's. (authors)},
doi = {},
journal = {},
number = ,
volume = ,
place = {United States},
year = {2012},
month = {7}
}

Conference:
Other availability
Please see Document Availability for additional information on obtaining the full-text document. Library patrons may search WorldCat to identify libraries that hold this conference proceeding.

Save / Share: