skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: ESBWR enhanced flow distribution with optimized orificing and related fuel cycle performance

Conference ·
OSTI ID:22105923
; ;  [1]
  1. Global Nuclear Fuel - America, 3901 Castle Hayne Road, Wilmington, NC 28401 (United States)

The Economic Simplified Boiling Water Reactor (ESBWR) is GEH's latest Generation III+ reactor design with natural circulation coolant flow and passive safety features. Reliance on natural circulation as the sole means of core coolant driving force results in increased power-to-flow ratio and places increased importance on the efficient distribution of core flow in order to achieve optimum thermal margins and improved fuel cycle efficiency. In addition, the large core size of the ESBWR, containing 1132 bundles, greatly benefits from a more targeted distribution of flow, directing a higher fraction of flow to high power bundles in the 'ring of fire' region of typical BWR loading patterns and a lower fraction of flow to low power bundles on and near the core periphery. Desirable flow distributions can be achieved by modifying the hydraulic resistance of the inlet orifices to preferentially force flow to the targeted region. The inlet orifice is a feature that is incorporated into the fuel support piece of a typical BWR design. The majority of existing forced circulation BWR's rely on only two orifice types - a peripheral orifice located along the outermost row and a central orifice in all other locations. A more optimum distribution of core flow is achievable with the introduction of multiple inlet orifice types. Multi-zone orifice layouts comprised of two, three and four types have been evaluated for the ESBWR. An efficient radial distribution of flow can have a direct beneficial effect on the Minimum Critical Power Ratio (MCPR). An improved multi-zone orifice layout in the ESBWR has the potential of significantly increasing active flow in high power bundles. On average, this flow increase corresponds to a noteworthy MCPR improvement. Additional MCPR margin may be used to enhance operating flexibility and to achieve reduced fuel cycle costs over the plant lifetime. Combined with GNF's latest high performance fuel design for the ESBWR, GNF2E, and improved loading pattern concepts, fuel cycle costs have been shown to be very competitive. (authors)

Research Organization:
American Nuclear Society, 555 North Kensington Avenue, La Grange Park, IL 60526 (United States)
OSTI ID:
22105923
Resource Relation:
Conference: ICAPP '12: 2012 International Congress on Advances in Nuclear Power Plants, Chicago, IL (United States), 24-28 Jun 2012; Other Information: Country of input: France; 5 refs.; Related Information: In: Proceedings of the 2012 International Congress on Advances in Nuclear Power Plants - ICAPP '12| 2799 p.
Country of Publication:
United States
Language:
English