skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Assessment of fission product yields data needs in nuclear reactor applications

Abstract

Studies on the build-up of fission products in fast reactors have been performed, with particular emphasis on the effects related to the physics of the nuclear fission process. Fission product yields, which are required for burn-up calculations, depend on the proton and neutron number of the target nucleus as well as on the incident neutron energy. Evaluated nuclear data on fission product yields are available for all relevant target nuclides in reactor applications. However, the description of their energy dependence in evaluated data is still rather rudimentary, which is due to the lack of experimental fast fission data and reliable physical models. Additionally, physics studies of evaluated JEFF-3.1.1 fission yields data have shown potential improvements, especially for various fast fission data sets of this evaluation. In recent years, important progress in the understanding of the fission process has been made, and advanced model codes are currently being developed. This paper deals with the semi-empirical approach to the description of the fission process, which is used in the GEF code being developed by K.-H. Schmidt and B. Jurado on behalf of the OECD Nuclear Energy Agency, and with results from the corresponding author's diploma thesis. An extended version of the GEFmore » code, supporting the calculation of spectrum weighted fission product yields, has been developed. It has been applied to the calculation of fission product yields in the fission rate spectra of a MOX fuelled sodium-cooled fast reactor. Important results are compared to JEFF-3.1.1 data and discussed in this paper. (authors)« less

Authors:
; ;  [1]
  1. Institut fuer Neutronenphysik und Reaktortechnik, KIT Campus Nord, Hermann-von-Helmholtz-Platz 1, 76344 Leopoldshafen (Germany)
Publication Date:
Research Org.:
American Nuclear Society, Inc., 555 N. Kensington Avenue, La Grange Park, Illinois 60526 (United States)
OSTI Identifier:
22105898
Resource Type:
Conference
Resource Relation:
Conference: PHYSOR 2012: Conference on Advances in Reactor Physics - Linking Research, Industry, and Education, Knoxville, TN (United States), 15-20 Apr 2012; Other Information: Country of input: France; 26 refs.
Country of Publication:
United States
Language:
English
Subject:
22 GENERAL STUDIES OF NUCLEAR REACTORS; BURNUP; ENERGY DEPENDENCE; EVALUATED DATA; FAST FISSION; FAST REACTORS; FISSION PRODUCTS; FISSION YIELD; MIXED OXIDE FUELS; NEUTRONS; PROTONS; SENSITIVITY; SODIUM COOLED REACTORS; SPECTRA

Citation Formats

Kern, K., Becker, M., and Broeders, C. Assessment of fission product yields data needs in nuclear reactor applications. United States: N. p., 2012. Web.
Kern, K., Becker, M., & Broeders, C. Assessment of fission product yields data needs in nuclear reactor applications. United States.
Kern, K., Becker, M., and Broeders, C. Sun . "Assessment of fission product yields data needs in nuclear reactor applications". United States.
@article{osti_22105898,
title = {Assessment of fission product yields data needs in nuclear reactor applications},
author = {Kern, K. and Becker, M. and Broeders, C.},
abstractNote = {Studies on the build-up of fission products in fast reactors have been performed, with particular emphasis on the effects related to the physics of the nuclear fission process. Fission product yields, which are required for burn-up calculations, depend on the proton and neutron number of the target nucleus as well as on the incident neutron energy. Evaluated nuclear data on fission product yields are available for all relevant target nuclides in reactor applications. However, the description of their energy dependence in evaluated data is still rather rudimentary, which is due to the lack of experimental fast fission data and reliable physical models. Additionally, physics studies of evaluated JEFF-3.1.1 fission yields data have shown potential improvements, especially for various fast fission data sets of this evaluation. In recent years, important progress in the understanding of the fission process has been made, and advanced model codes are currently being developed. This paper deals with the semi-empirical approach to the description of the fission process, which is used in the GEF code being developed by K.-H. Schmidt and B. Jurado on behalf of the OECD Nuclear Energy Agency, and with results from the corresponding author's diploma thesis. An extended version of the GEF code, supporting the calculation of spectrum weighted fission product yields, has been developed. It has been applied to the calculation of fission product yields in the fission rate spectra of a MOX fuelled sodium-cooled fast reactor. Important results are compared to JEFF-3.1.1 data and discussed in this paper. (authors)},
doi = {},
journal = {},
number = ,
volume = ,
place = {United States},
year = {2012},
month = {7}
}

Conference:
Other availability
Please see Document Availability for additional information on obtaining the full-text document. Library patrons may search WorldCat to identify libraries that hold this conference proceeding.

Save / Share: