skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Comparisons on thin and thick neutron target for low energy proton beam

Conference ·
OSTI ID:22105749
; ; ;  [1]
  1. Dept. of Engineering Physics, Tsinghua Univ., Beijing 100084 (China)

As the progress on accelerator physics and neutronics, the compact neutron sources driven by low energy and high intensity beam are becoming extensively developed and researched all around the world. The neutron target of an accelerator driven neutron source is one of the key components, and the stability of the neutron target affect the operation and performance of the neutron facility. When a low energy proton is projected to the beryllium target, the main reaction is the inelastic scattering between the proton and extra-nuclear electrons. As the decreasing of proton energy, the rate of elastic scattering between proton and target nucleus begins to increase. When the energy of proton is very low, the pickup charge reaction begins to appear. Focus on the problems brought by high intensity proton beam such as proton implantation, radiation damages, heat deposition and gas production, we performed sufficient numerical simulations for both thin and thick target determined by proton range. The results show that the critical problem for thick target is the proton implantation, causing the forming of bubbles and beryllium flaked in vacuum. The thin target sacrifices a little neutron yield, but avoid the proton stopped in target, and decrease the radiation damage and energy deposition. (authors)

Research Organization:
American Nuclear Society, Inc., 555 N. Kensington Avenue, La Grange Park, Illinois 60526 (United States)
OSTI ID:
22105749
Resource Relation:
Conference: PHYSOR 2012: Conference on Advances in Reactor Physics - Linking Research, Industry, and Education, Knoxville, TN (United States), 15-20 Apr 2012; Other Information: Country of input: France; 10 refs.
Country of Publication:
United States
Language:
English