skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Interplay between chemical state, electric properties, and ferromagnetism in Fe-doped ZnO films

Journal Article · · Journal of Applied Physics
DOI:https://doi.org/10.1063/1.4794882· OSTI ID:22102299
; ; ; ;  [1]
  1. Laboratory of Advanced Materials, Department of Materials Science and Engineering, Tsinghua University, Beijing 100084 (China)

Valence state of Fe ions plays an important role in the physical properties of Fe doped ZnO films. Here, a series of Zn{sub 1-x}Fe{sub x}O films with different Fe concentrations (x = 0, 2.3, 5.4, 7.1, and 9.3 at. %) were prepared to investigate their structural, piezoelectric, ferroelectric, bipolar resistive switching properties, and electrical-control of ferromagnetism at room temperature. The structure characterizations indicate that the chemical state of Fe ions substituting Zn{sup 2+} site changes from Fe{sup 3+} to Fe{sup 2+} with the increase of Fe dopant concentration. We found enhanced piezoelectric and ferroelectric properties in Zn{sub 0.977}Fe{sub 0.023}O films with more Fe{sup 3+} due to the smaller Fe{sup 3+} ionic size in comparison with Zn{sup 2+} while the increase of Fe{sup 2+} concentration by a larger amount of Fe dopant results in the worse ferroelectric and piezoelectric performance. All Pt/Zn{sub 1-x}Fe{sub x}O/Pt devices show bipolar resistive switching properties. Especially, devices with lower Fe dopant concentration exhibit better endurance properties due to their higher crystalline quality. The variation of oxygen vacancies during resistive switching provides an opportunity to tune ferromagnetism of Fe-doped ZnO films, giving rise to the integration of charge and spin into a simple Pt/Zn{sub 1-x}Fe{sub x}O/Pt devices. The multifunctional properties of Fe-doped ZnO films are promising for communication systems and information storage devices.

OSTI ID:
22102299
Journal Information:
Journal of Applied Physics, Vol. 113, Issue 10; Other Information: (c) 2013 American Institute of Physics; Country of input: International Atomic Energy Agency (IAEA); ISSN 0021-8979
Country of Publication:
United States
Language:
English