skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Establishing a standard calibration methodology for MOSFET detectors in computed tomography dosimetry

Abstract

Purpose: The use of metal-oxide-semiconductor field-effect transistor (MOSFET) detectors for patient dosimetry has increased by {approx}25% since 2005. Despite this increase, no standard calibration methodology has been identified nor calibration uncertainty quantified for the use of MOSFET dosimetry in CT. This work compares three MOSFET calibration methodologies proposed in the literature, and additionally investigates questions relating to optimal time for signal equilibration and exposure levels for maximum calibration precision. Methods: The calibration methodologies tested were (1) free in-air (FIA) with radiographic x-ray tube, (2) FIA with stationary CT x-ray tube, and (3) within scatter phantom with rotational CT x-ray tube. Each calibration was performed at absorbed dose levels of 10, 23, and 35 mGy. Times of 0 min or 5 min were investigated for signal equilibration before or after signal read out. Results: Calibration precision was measured to be better than 5%-7%, 3%-5%, and 2%-4% for the 10, 23, and 35 mGy respective dose levels, and independent of calibration methodology. No correlation was demonstrated for precision and signal equilibration time when allowing 5 min before or after signal read out. Differences in average calibration coefficients were demonstrated between the FIA with CT calibration methodology 26.7 {+-} 1.1 mV cGy{sup -1}more » versus the CT scatter phantom 29.2 {+-} 1.0 mV cGy{sup -1} and FIA with x-ray 29.9 {+-} 1.1 mV cGy{sup -1} methodologies. A decrease in MOSFET sensitivity was seen at an average change in read out voltage of {approx}3000 mV. Conclusions: The best measured calibration precision was obtained by exposing the MOSFET detectors to 23 mGy. No signal equilibration time is necessary to improve calibration precision. A significant difference between calibration outcomes was demonstrated for FIA with CT compared to the other two methodologies. If the FIA with a CT calibration methodology was used to create calibration coefficients for the eventual use for phantom dosimetry, a measurement error {approx}12% will be reflected in the dosimetry results. The calibration process must emulate the eventual CT dosimetry process by matching or excluding scatter when calibrating the MOSFETs. Finally, the authors recommend that the MOSFETs are energy calibrated approximately every 2500-3000 mV.« less

Authors:
;  [1]
  1. Department of Radiological Sciences, St. Jude Children's Research Hospital, Memphis, Tennessee 38105 (United States)
Publication Date:
OSTI Identifier:
22098869
Resource Type:
Journal Article
Journal Name:
Medical Physics
Additional Journal Information:
Journal Volume: 39; Journal Issue: 6; Other Information: (c) 2012 American Association of Physicists in Medicine; Country of input: International Atomic Energy Agency (IAEA); Journal ID: ISSN 0094-2405
Country of Publication:
United States
Language:
English
Subject:
46 INSTRUMENTATION RELATED TO NUCLEAR SCIENCE AND TECHNOLOGY; 60 APPLIED LIFE SCIENCES; ACCURACY; CALIBRATION; CALIBRATION STANDARDS; COMPUTERIZED TOMOGRAPHY; DOSIMETRY; MOSFET; OXIDES; PATIENTS; PHANTOMS; RADIATION DOSES; READOUT SYSTEMS; SEMICONDUCTOR MATERIALS; SENSITIVITY; SIGNALS; X-RAY TUBES

Citation Formats

Brady, S. L., and Kaufman, R. A. Establishing a standard calibration methodology for MOSFET detectors in computed tomography dosimetry. United States: N. p., 2012. Web. doi:10.1118/1.4712221.
Brady, S. L., & Kaufman, R. A. Establishing a standard calibration methodology for MOSFET detectors in computed tomography dosimetry. United States. doi:10.1118/1.4712221.
Brady, S. L., and Kaufman, R. A. Fri . "Establishing a standard calibration methodology for MOSFET detectors in computed tomography dosimetry". United States. doi:10.1118/1.4712221.
@article{osti_22098869,
title = {Establishing a standard calibration methodology for MOSFET detectors in computed tomography dosimetry},
author = {Brady, S. L. and Kaufman, R. A.},
abstractNote = {Purpose: The use of metal-oxide-semiconductor field-effect transistor (MOSFET) detectors for patient dosimetry has increased by {approx}25% since 2005. Despite this increase, no standard calibration methodology has been identified nor calibration uncertainty quantified for the use of MOSFET dosimetry in CT. This work compares three MOSFET calibration methodologies proposed in the literature, and additionally investigates questions relating to optimal time for signal equilibration and exposure levels for maximum calibration precision. Methods: The calibration methodologies tested were (1) free in-air (FIA) with radiographic x-ray tube, (2) FIA with stationary CT x-ray tube, and (3) within scatter phantom with rotational CT x-ray tube. Each calibration was performed at absorbed dose levels of 10, 23, and 35 mGy. Times of 0 min or 5 min were investigated for signal equilibration before or after signal read out. Results: Calibration precision was measured to be better than 5%-7%, 3%-5%, and 2%-4% for the 10, 23, and 35 mGy respective dose levels, and independent of calibration methodology. No correlation was demonstrated for precision and signal equilibration time when allowing 5 min before or after signal read out. Differences in average calibration coefficients were demonstrated between the FIA with CT calibration methodology 26.7 {+-} 1.1 mV cGy{sup -1} versus the CT scatter phantom 29.2 {+-} 1.0 mV cGy{sup -1} and FIA with x-ray 29.9 {+-} 1.1 mV cGy{sup -1} methodologies. A decrease in MOSFET sensitivity was seen at an average change in read out voltage of {approx}3000 mV. Conclusions: The best measured calibration precision was obtained by exposing the MOSFET detectors to 23 mGy. No signal equilibration time is necessary to improve calibration precision. A significant difference between calibration outcomes was demonstrated for FIA with CT compared to the other two methodologies. If the FIA with a CT calibration methodology was used to create calibration coefficients for the eventual use for phantom dosimetry, a measurement error {approx}12% will be reflected in the dosimetry results. The calibration process must emulate the eventual CT dosimetry process by matching or excluding scatter when calibrating the MOSFETs. Finally, the authors recommend that the MOSFETs are energy calibrated approximately every 2500-3000 mV.},
doi = {10.1118/1.4712221},
journal = {Medical Physics},
issn = {0094-2405},
number = 6,
volume = 39,
place = {United States},
year = {2012},
month = {6}
}