Calculation of k{sub Q{sub c{sub l{sub i{sub n,Q{sub m{sub s{sub r}{sup f{sub c}{sub l}{sub i}{sub n},f{sub m}{sub s}{sub r}}}}}}}}} for several small detectors and for two linear accelerators using Monte Carlo simulations
Abstract
Purpose: The scope of this study was to determine a complete set of correction factors for several detectors in static small photon fields for two linear accelerators (linacs) and for several detectors. Methods: Measurements for Monte Carlo (MC) commissioning were performed for two linacs, Siemens Primus and Elekta Synergy. After having determined the source parameters that best fit the measurements of field specific output factors, profiles, and tissuephantom ratio, the generalized version of the classical beam quality correction factor for static small fields, k{sub Q{sub c{sub l{sub i{sub n,Q{sub m{sub s{sub r}{sup f{sub c}{sub l}{sub i}{sub n},f{sub m}{sub s}{sub r}}}}}}}}}, were determined for several types of detectors by using the egs{sub c}hamber Monte Carlo user code which can accurately reproduce the geometry and the material composition of the detector. The influence of many parameters (energy and radial FWHM of the electron beam source, field dimensions, type of accelerator) on the value of k{sub Q{sub c{sub l{sub i{sub n,Q{sub m{sub s{sub r}{sup f{sub c}{sub l}{sub i}{sub n},f{sub m}{sub s}{sub r}}}}}}}}} was evaluated. Moreover, a MC analysis of the parameters that influence the change of k{sub Q{sub c{sub l{sub i{sub n,Q{sub m{sub s{sub r}{sup f{sub c}{sub l}{sub i}{sub n},f{sub m}{sub s}{sub r}}}}}}}}}more »
 Authors:

 Department of Medical Physics, ULSS 6  36100 Vicenza (Italy)
 Publication Date:
 OSTI Identifier:
 22098691
 Resource Type:
 Journal Article
 Journal Name:
 Medical Physics
 Additional Journal Information:
 Journal Volume: 38; Journal Issue: 12; Other Information: (c) 2011 American Association of Physicists in Medicine; Country of input: International Atomic Energy Agency (IAEA); Journal ID: ISSN 00942405
 Country of Publication:
 United States
 Language:
 English
 Subject:
 46 INSTRUMENTATION RELATED TO NUCLEAR SCIENCE AND TECHNOLOGY; 62 RADIOLOGY AND NUCLEAR MEDICINE; COMMISSIONING; COMPUTERIZED SIMULATION; CORRECTIONS; ELECTRON BEAMS; ELECTRON SOURCES; LINEAR ACCELERATORS; MONTE CARLO METHOD; NUCLEAR INDUSTRY; PHANTOMS; PHOTON BEAMS; RADIOTHERAPY
Citation Formats
Francescon, P., Cora, S., and Satariano, N. Calculation of k{sub Q{sub c{sub l{sub i{sub n,Q{sub m{sub s{sub r}{sup f{sub c}{sub l}{sub i}{sub n},f{sub m}{sub s}{sub r}}}}}}}}} for several small detectors and for two linear accelerators using Monte Carlo simulations. United States: N. p., 2011.
Web. doi:10.1118/1.3660770.
Francescon, P., Cora, S., & Satariano, N. Calculation of k{sub Q{sub c{sub l{sub i{sub n,Q{sub m{sub s{sub r}{sup f{sub c}{sub l}{sub i}{sub n},f{sub m}{sub s}{sub r}}}}}}}}} for several small detectors and for two linear accelerators using Monte Carlo simulations. United States. https://doi.org/10.1118/1.3660770
Francescon, P., Cora, S., and Satariano, N. Thu .
"Calculation of k{sub Q{sub c{sub l{sub i{sub n,Q{sub m{sub s{sub r}{sup f{sub c}{sub l}{sub i}{sub n},f{sub m}{sub s}{sub r}}}}}}}}} for several small detectors and for two linear accelerators using Monte Carlo simulations". United States. https://doi.org/10.1118/1.3660770.
@article{osti_22098691,
title = {Calculation of k{sub Q{sub c{sub l{sub i{sub n,Q{sub m{sub s{sub r}{sup f{sub c}{sub l}{sub i}{sub n},f{sub m}{sub s}{sub r}}}}}}}}} for several small detectors and for two linear accelerators using Monte Carlo simulations},
author = {Francescon, P. and Cora, S. and Satariano, N.},
abstractNote = {Purpose: The scope of this study was to determine a complete set of correction factors for several detectors in static small photon fields for two linear accelerators (linacs) and for several detectors. Methods: Measurements for Monte Carlo (MC) commissioning were performed for two linacs, Siemens Primus and Elekta Synergy. After having determined the source parameters that best fit the measurements of field specific output factors, profiles, and tissuephantom ratio, the generalized version of the classical beam quality correction factor for static small fields, k{sub Q{sub c{sub l{sub i{sub n,Q{sub m{sub s{sub r}{sup f{sub c}{sub l}{sub i}{sub n},f{sub m}{sub s}{sub r}}}}}}}}}, were determined for several types of detectors by using the egs{sub c}hamber Monte Carlo user code which can accurately reproduce the geometry and the material composition of the detector. The influence of many parameters (energy and radial FWHM of the electron beam source, field dimensions, type of accelerator) on the value of k{sub Q{sub c{sub l{sub i{sub n,Q{sub m{sub s{sub r}{sup f{sub c}{sub l}{sub i}{sub n},f{sub m}{sub s}{sub r}}}}}}}}} was evaluated. Moreover, a MC analysis of the parameters that influence the change of k{sub Q{sub c{sub l{sub i{sub n,Q{sub m{sub s{sub r}{sup f{sub c}{sub l}{sub i}{sub n},f{sub m}{sub s}{sub r}}}}}}}}} as a function of field dimension was performed. A detailed analysis of uncertainties related to the measurements of the field specific output factor and to the Monte Carlo calculation of k{sub Q{sub c{sub l{sub i{sub n,Q{sub m{sub s{sub r}{sup f{sub c}{sub l}{sub i}{sub n},f{sub m}{sub s}{sub r}}}}}}}}} was done. Results: The simulations demonstrated that the correction factor k{sub Q{sub c{sub l{sub i{sub n,Q{sub m{sub s{sub r}{sup f{sub c}{sub l}{sub i}{sub n},f{sub m}{sub s}{sub r}}}}}}}}} can be considered independent from the quality beam factor Q in the range 0.68 {+} 0.01 for all the detectors analyzed. The k{sub Q{sub c{sub l{sub i{sub n,Q{sub m{sub s{sub r}{sup f{sub c}{sub l}{sub i}{sub n},f{sub m}{sub s}{sub r}}}}}}}}} of PTW 60012 and EDGE diodes can be assumed dependent only on the field size, for fields down to 0.5 x 0.5 cm{sup 2}. The microLion, and the microchambers, instead, must be used with some caution because they exhibit a slight dependence on the radial FWHM of the electron source, and therefore, a correction factor only dependent on field size can be used for fields {>=}0.75 x 0.75 and {>=}1.0 x 1.0 cm{sup 2}, respectively. The analysis of uncertainties gave an estimate of uncertainty for the 0.5 x 0.5 cm{sup 2} field of about 0.7% (1{sigma}) for k{sub Q{sub c{sub l{sub i{sub n,Q{sub m{sub s{sub r}{sup f{sub c}{sub l}{sub i}{sub n},f{sub m}{sub s}{sub r}}}}}}}}} factor and of about 1.0% (1{sigma}) for the field output factor, {Omega}{sub Q{sub c{sub l{sub i{sub n,Q{sub m{sub s{sub r}{sup f{sub c}{sub l}{sub i}{sub n},f{sub m}{sub s}{sub r}}}}}}}}}, of diodes, microchambers, and microLion. Conclusions: Stereotactic diodes with the appropriate k{sub Q{sub c{sub l{sub i{sub n,Q{sub m{sub s{sub r}{sup f{sub c}{sub l}{sub i}{sub n},f{sub m}{sub s}{sub r}}}}}}}}} are recommended for determining {Omega}{sub Q{sub c{sub l{sub i{sub n,Q{sub m{sub s{sub r}{sup f{sub c}{sub l}{sub i}{sub n},f{sub m}{sub s}{sub r}}}}}}}}} of small photon beams.},
doi = {10.1118/1.3660770},
url = {https://www.osti.gov/biblio/22098691},
journal = {Medical Physics},
issn = {00942405},
number = 12,
volume = 38,
place = {United States},
year = {2011},
month = {12}
}