skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: GLOBAL ENERGETICS OF THIRTY-EIGHT LARGE SOLAR ERUPTIVE EVENTS

Abstract

We have evaluated the energetics of 38 solar eruptive events observed by a variety of spacecraft instruments between 2002 February and 2006 December, as accurately as the observations allow. The measured energetic components include: (1) the radiated energy in the Geostationary Operational Environmental Satellite 1-8 A band, (2) the total energy radiated from the soft X-ray (SXR) emitting plasma, (3) the peak energy in the SXR-emitting plasma, (4) the bolometric radiated energy over the full duration of the event, (5) the energy in flare-accelerated electrons above 20 keV and in flare-accelerated ions above 1 MeV, (6) the kinetic and potential energies of the coronal mass ejection (CME), (7) the energy in solar energetic particles (SEPs) observed in interplanetary space, and (8) the amount of free (non-potential) magnetic energy estimated to be available in the pertinent active region. Major conclusions include: (1) the energy radiated by the SXR-emitting plasma exceeds, by about half an order of magnitude, the peak energy content of the thermal plasma that produces this radiation; (2) the energy content in flare-accelerated electrons and ions is sufficient to supply the bolometric energy radiated across all wavelengths throughout the event; (3) the energy contents of flare-accelerated electrons and ionsmore » are comparable; (4) the energy in SEPs is typically a few percent of the CME kinetic energy (measured in the rest frame of the solar wind); and (5) the available magnetic energy is sufficient to power the CME, the flare-accelerated particles, and the hot thermal plasma.« less

Authors:
 [1]; ; ;  [2];  [3];  [4];  [5];  [6];  [7]
  1. Department of Physics and Astronomy, Western Kentucky University, Bowling Green, KY 42101 (United States)
  2. NASA Goddard Space Flight Center, Code 671, Greenbelt, MD 20771 (United States)
  3. Space Radiation Laboratory, California Institute of Technology, Pasadena, CA 91125 (United States)
  4. Center for Astrophysics and Space Astronomy, University of Colorado, Boulder, CO 80309 (United States)
  5. Department of Astronomy, University of Maryland, College Park, MD 20742 (United States)
  6. Naval Research Laboratory, Code 7663, Washington, DC 20375 (United States)
  7. Space Sciences Laboratory, University of California, Berkeley, CA 94720 (United States)
Publication Date:
OSTI Identifier:
22086450
Resource Type:
Journal Article
Journal Name:
Astrophysical Journal
Additional Journal Information:
Journal Volume: 759; Journal Issue: 1; Other Information: Country of input: International Atomic Energy Agency (IAEA); Journal ID: ISSN 0004-637X
Country of Publication:
United States
Language:
English
Subject:
79 ASTROPHYSICS, COSMOLOGY AND ASTRONOMY; ASTRONOMY; ASTROPHYSICS; BOLOMETERS; ELECTRON EMISSION; GAMMA RADIATION; GOES SATELLITES; INTERPLANETARY SPACE; IONS; KEV RANGE; KINETIC ENERGY; MASS; MEV RANGE; PLASMA; POTENTIAL ENERGY; SOFT X RADIATION; SOLAR ELECTRONS; SOLAR FLARES; SOLAR WIND; SUN

Citation Formats

Emslie, A. G., Dennis, B. R., Shih, A. Y., Chamberlin, P. C., Mewaldt, R. A., Moore, C. S., Share, G. H., Vourlidas, A., and Welsch, B. T., E-mail: emslieg@wku.edu, E-mail: brian.r.dennis@nasa.gov, E-mail: albert.y.shih@nasa.gov, E-mail: phillip.c.chamberlin@nasa.gov, E-mail: rmewaldt@srl.caltech.edu, E-mail: christopher.moore-1@colorado.edu, E-mail: share@astro.umd.edu, E-mail: vourlidas@nrl.navy.mil, E-mail: welsch@ssl.berkeley.edu. GLOBAL ENERGETICS OF THIRTY-EIGHT LARGE SOLAR ERUPTIVE EVENTS. United States: N. p., 2012. Web. doi:10.1088/0004-637X/759/1/71.
Emslie, A. G., Dennis, B. R., Shih, A. Y., Chamberlin, P. C., Mewaldt, R. A., Moore, C. S., Share, G. H., Vourlidas, A., & Welsch, B. T., E-mail: emslieg@wku.edu, E-mail: brian.r.dennis@nasa.gov, E-mail: albert.y.shih@nasa.gov, E-mail: phillip.c.chamberlin@nasa.gov, E-mail: rmewaldt@srl.caltech.edu, E-mail: christopher.moore-1@colorado.edu, E-mail: share@astro.umd.edu, E-mail: vourlidas@nrl.navy.mil, E-mail: welsch@ssl.berkeley.edu. GLOBAL ENERGETICS OF THIRTY-EIGHT LARGE SOLAR ERUPTIVE EVENTS. United States. doi:10.1088/0004-637X/759/1/71.
Emslie, A. G., Dennis, B. R., Shih, A. Y., Chamberlin, P. C., Mewaldt, R. A., Moore, C. S., Share, G. H., Vourlidas, A., and Welsch, B. T., E-mail: emslieg@wku.edu, E-mail: brian.r.dennis@nasa.gov, E-mail: albert.y.shih@nasa.gov, E-mail: phillip.c.chamberlin@nasa.gov, E-mail: rmewaldt@srl.caltech.edu, E-mail: christopher.moore-1@colorado.edu, E-mail: share@astro.umd.edu, E-mail: vourlidas@nrl.navy.mil, E-mail: welsch@ssl.berkeley.edu. Thu . "GLOBAL ENERGETICS OF THIRTY-EIGHT LARGE SOLAR ERUPTIVE EVENTS". United States. doi:10.1088/0004-637X/759/1/71.
@article{osti_22086450,
title = {GLOBAL ENERGETICS OF THIRTY-EIGHT LARGE SOLAR ERUPTIVE EVENTS},
author = {Emslie, A. G. and Dennis, B. R. and Shih, A. Y. and Chamberlin, P. C. and Mewaldt, R. A. and Moore, C. S. and Share, G. H. and Vourlidas, A. and Welsch, B. T., E-mail: emslieg@wku.edu, E-mail: brian.r.dennis@nasa.gov, E-mail: albert.y.shih@nasa.gov, E-mail: phillip.c.chamberlin@nasa.gov, E-mail: rmewaldt@srl.caltech.edu, E-mail: christopher.moore-1@colorado.edu, E-mail: share@astro.umd.edu, E-mail: vourlidas@nrl.navy.mil, E-mail: welsch@ssl.berkeley.edu},
abstractNote = {We have evaluated the energetics of 38 solar eruptive events observed by a variety of spacecraft instruments between 2002 February and 2006 December, as accurately as the observations allow. The measured energetic components include: (1) the radiated energy in the Geostationary Operational Environmental Satellite 1-8 A band, (2) the total energy radiated from the soft X-ray (SXR) emitting plasma, (3) the peak energy in the SXR-emitting plasma, (4) the bolometric radiated energy over the full duration of the event, (5) the energy in flare-accelerated electrons above 20 keV and in flare-accelerated ions above 1 MeV, (6) the kinetic and potential energies of the coronal mass ejection (CME), (7) the energy in solar energetic particles (SEPs) observed in interplanetary space, and (8) the amount of free (non-potential) magnetic energy estimated to be available in the pertinent active region. Major conclusions include: (1) the energy radiated by the SXR-emitting plasma exceeds, by about half an order of magnitude, the peak energy content of the thermal plasma that produces this radiation; (2) the energy content in flare-accelerated electrons and ions is sufficient to supply the bolometric energy radiated across all wavelengths throughout the event; (3) the energy contents of flare-accelerated electrons and ions are comparable; (4) the energy in SEPs is typically a few percent of the CME kinetic energy (measured in the rest frame of the solar wind); and (5) the available magnetic energy is sufficient to power the CME, the flare-accelerated particles, and the hot thermal plasma.},
doi = {10.1088/0004-637X/759/1/71},
journal = {Astrophysical Journal},
issn = {0004-637X},
number = 1,
volume = 759,
place = {United States},
year = {2012},
month = {11}
}