skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Transition from interpulse to afterglow plasmas driven by repetitive short-pulse microwaves in a multicusp magnetic field

Journal Article · · Physics of Plasmas
DOI:https://doi.org/10.1063/1.4748136· OSTI ID:22085990
; ;  [1]
  1. Department of Physics, Indian Institute of Technology, Kanpur 208016 (India)

In the power-off phase, plasmas generated by repetitive short-pulse microwaves in a multicusp magnetic field show a transitive nature from interpulse to afterglow as a function of pulse duration t{sub w} = 20-200 {mu}s. The ionized medium can be driven from a highly non equilibrium to an equilibrium state inside the pulses, thereby dictating the behavior of the plasma in the power-off phase. Compared to afterglows, interpulse plasmas observed for t{sub w} < 50 {mu}s are characterized by a quasi-steady-state in electron density that persists for {approx} 20-40 {mu}s even after the end of the pulse and has a relatively slower decay rate ({approx} 4.3 Multiplication-Sign 10{sup 4} s{sup -1}) of the electron temperature, as corroborated by optical measurements. The associated electron energy probability function indicates depletion in low energy electrons which appear at higher energies just after the end of the pulse. The transition occurs at t{sub w} {approx} 50 {mu}s as confirmed by time evolution of integrated electron numbers densities obtained from the distribution function.

OSTI ID:
22085990
Journal Information:
Physics of Plasmas, Vol. 19, Issue 8; Other Information: (c) 2012 American Institute of Physics; Country of input: International Atomic Energy Agency (IAEA); ISSN 1070-664X
Country of Publication:
United States
Language:
English