skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Pointer states via engineered dissipation

Journal Article · · Physical Review. A
;  [1];  [2]
  1. Department of Physics and Astronomy, Dartmouth College, Hanover, New Hampshire 03755 (United States)
  2. Ames Laboratory, Iowa State University, Ames, Iowa 50011 (United States)

Pointer states are long-lasting high-fidelity states in open quantum systems. We show how any pure state in a non-Markovian open quantum system can be made to behave as a pointer state by suitably engineering the coupling to the environment via open-loop periodic control. Engineered pointer states are constructed as approximate fixed points of the controlled open-system dynamics, in such a way that they are guaranteed to survive over a long time with a fidelity determined by the relative precision with which the dynamics is engineered. We provide quantitative minimum-fidelity bounds by identifying symmetry and ergodicity conditions that the decoherence-inducing perturbation must obey in the presence of control, and develop explicit pulse sequences for engineering any desired set of orthogonal states as pointer states. These general control protocols are validated through exact numerical simulations as well as semiclassical approximations in realistic single- and two-qubit dissipative systems. We also examine the role of control imperfections, and show that while pointer-state engineering protocols are highly robust in the presence of systematic pulse errors, the latter can also lead to unintended pointer-state generation in dynamical decoupling implementations, explaining the initial-state selectivity observed in recent experiments.

OSTI ID:
22075447
Journal Information:
Physical Review. A, Vol. 84, Issue 2; Other Information: (c) 2011 American Institute of Physics; Country of input: International Atomic Energy Agency (IAEA); ISSN 1050-2947
Country of Publication:
United States
Language:
English

Similar Records

Non-Markovian qubit dynamics in a thermal field bath: Relaxation, decoherence, and entanglement
Journal Article · Tue Feb 01 00:00:00 EST 2005 · Physical Review. A · OSTI ID:22075447

Aperiodic dynamical decoupling sequences in the presence of pulse errors
Journal Article · Wed Jan 12 00:00:00 EST 2011 · Journal of Physics. B, Atomic, Molecular and Optical Physics · OSTI ID:22075447

Long-time electron spin storage via dynamical suppression of hyperfine-induced decoherence in a quantum dot
Journal Article · Thu Mar 27 00:00:00 EDT 2008 · Physical Review. B, Condensed Matter and Materials Physics · OSTI ID:22075447