skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Hydrogen effects in hydrofluorocarbon plasma etching of silicon nitride: Beam study with CF{sup +}, CF{sub 2}{sup +}, CHF{sub 2}{sup +}, and CH{sub 2}F{sup +} ions

Journal Article · · Journal of Vacuum Science and Technology. A, International Journal Devoted to Vacuum, Surfaces, and Films
DOI:https://doi.org/10.1116/1.3610981· OSTI ID:22054111
; ; ; ;  [1]
  1. Center for Atomic and Molecular Technologies, Osaka University, Osaka 565-0871 (Japan)

Hydrogen in hydrofluorocarbon plasmas plays an important role in silicon nitride (Si{sub 3}N{sub 4}) reactive ion etching. This study focuses on the elementary reactions of energetic CHF{sub 2}{sup +} and CH{sub 2}F{sup +} ions with Si{sub 3}N{sub 4} surfaces. In the experiments, Si{sub 3}N{sub 4} surfaces were irradiated by monoenergetic (500-1500 eV) beams of CHF{sub 2}{sup +} and CH{sub 2}F{sup +} ions as well as hydrogen-free CF{sub 2}{sup +} and CF{sup +} ions generated by a mass-selected ion beam system and their etching yields and surface properties were examined. It has been found that, when etching takes place, the etching rates of Si{sub 3}N{sub 4} by hydrofluorocarbon ions, i.e., CHF{sub 2}{sup +} and CH{sub 2}F{sup +}, are higher than those by the corresponding fluorocarbon ions, i.e., CF{sub 2}{sup +} and CF{sup +}, respectively. When carbon film deposition takes place, it has been found that hydrogen of incident hydrofluorocarbon ions tends to scavenge fluorine of the deposited film, reducing its fluorine content.

OSTI ID:
22054111
Journal Information:
Journal of Vacuum Science and Technology. A, International Journal Devoted to Vacuum, Surfaces, and Films, Vol. 29, Issue 5; Other Information: (c) 2011 American Vacuum Society; Country of input: International Atomic Energy Agency (IAEA); ISSN 1553-1813
Country of Publication:
United States
Language:
English