skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: On the effect of Ta on improved oxidation resistance of Ti-Al-Ta-N coatings

Journal Article · · Journal of Vacuum Science and Technology. A, International Journal Devoted to Vacuum, Surfaces, and Films
DOI:https://doi.org/10.1116/1.3119671· OSTI ID:22050988

Formation of protective oxide scales is the main reason for the high oxidation resistance of TiAlN based coatings. Here the authors report on further improvement in the oxidation resistance of TiAlN by Ta alloying. An industrial-scale cathodic arc evaporation facility was used to deposit Ti-Al-Ta-N coatings from powder metallurgically produced Ti{sub 38}Al{sub 57}Ta{sub 5} targets. After oxidation in ambient air, a significantly reduced oxide layer thickness in comparison to unalloyed TiAlN reference material was observed. Energy-dispersive x-ray spectroscopy line scans and secondary ion mass spectroscopy depth profiling showed that the oxide scale consists of an Al-rich top layer without detectable amount of Ta and a Ti-Ta-rich sublayer. Transmission electron microscopy investigations revealed {alpha}-Al{sub 2}O{sub 3}, rutile-type TiO{sub 2}, and anatase-type TiO{sub 2} as the scale forming oxides. Furthermore, the Ti-Ta-rich sublayer consists of a porous layer at the oxide-nitride interface but appears dense toward the Al-rich top layer. The improved oxidation resistance is explained by doping the TiO{sub 2} lattice by replacing Ti{sup 4+} with Ta{sup 5+} in the rutile lattice, which decreases the oxygen mass transport. This leads to reduced oxidation of Ti under formation of TiO{sub 2} at the oxide-nitride interface and is the reason for the excellent oxidation behavior of Ti-Al-Ta-N coatings.

OSTI ID:
22050988
Journal Information:
Journal of Vacuum Science and Technology. A, International Journal Devoted to Vacuum, Surfaces, and Films, Vol. 27, Issue 3; Other Information: (c) 2009 American Vacuum Society; Country of input: International Atomic Energy Agency (IAEA); ISSN 1553-1813
Country of Publication:
United States
Language:
English