skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: The algebra of the quantum nondegenerate three-dimensional Kepler-Coulomb potential

Abstract

The classical generalized Kepler-Coulomb potential, introduced by Verrier and Evans, corresponds to a quantum superintegrable system, with quadratic and quartic integrals of motion. In this paper we show that the algebra of the integrals is a quadratic ternary algebra, i.e a quadratic extension of a Lie triple system.

Authors:
;  [1]
  1. Aristotle University of Thessaloniki, Mathematics Department (Greece)
Publication Date:
OSTI Identifier:
22043881
Resource Type:
Journal Article
Journal Name:
Physics of Atomic Nuclei
Additional Journal Information:
Journal Volume: 74; Journal Issue: 7; Other Information: Copyright (c) 2011 Pleiades Publishing, Ltd.; Country of input: International Atomic Energy Agency (IAEA); Journal ID: ISSN 1063-7788
Country of Publication:
United States
Language:
English
Subject:
71 CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS; ALGEBRA; COULOMB FIELD; INTEGRALS; QUANTUM MECHANICS; THREE-DIMENSIONAL CALCULATIONS

Citation Formats

Tanoudis, Y., and Daskaloyannis, C., E-mail: daskalo@math.auth.gr. The algebra of the quantum nondegenerate three-dimensional Kepler-Coulomb potential. United States: N. p., 2011. Web. doi:10.1134/S1063778811060299.
Tanoudis, Y., & Daskaloyannis, C., E-mail: daskalo@math.auth.gr. The algebra of the quantum nondegenerate three-dimensional Kepler-Coulomb potential. United States. doi:10.1134/S1063778811060299.
Tanoudis, Y., and Daskaloyannis, C., E-mail: daskalo@math.auth.gr. Fri . "The algebra of the quantum nondegenerate three-dimensional Kepler-Coulomb potential". United States. doi:10.1134/S1063778811060299.
@article{osti_22043881,
title = {The algebra of the quantum nondegenerate three-dimensional Kepler-Coulomb potential},
author = {Tanoudis, Y. and Daskaloyannis, C., E-mail: daskalo@math.auth.gr},
abstractNote = {The classical generalized Kepler-Coulomb potential, introduced by Verrier and Evans, corresponds to a quantum superintegrable system, with quadratic and quartic integrals of motion. In this paper we show that the algebra of the integrals is a quadratic ternary algebra, i.e a quadratic extension of a Lie triple system.},
doi = {10.1134/S1063778811060299},
journal = {Physics of Atomic Nuclei},
issn = {1063-7788},
number = 7,
volume = 74,
place = {United States},
year = {2011},
month = {7}
}