skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: MID-INFRARED EXTINCTION MAPPING OF INFRARED DARK CLOUDS. II. THE STRUCTURE OF MASSIVE STARLESS CORES AND CLUMPS

Journal Article · · Astrophysical Journal
 [1];  [2]
  1. Department of Astronomy, University of Florida, Gainesville, FL 32611 (United States)
  2. Departments of Astronomy and Physics, University of Florida, Gainesville, FL 32611 (United States)

We develop the mid-infrared extinction (MIREX) mapping technique of Butler and Tan (Paper I), presenting a new method to correct for the Galactic foreground emission based on observed saturation in independent cores. Using Spitzer GLIMPSE 8 {mu}m images, this allows us to accurately probe mass surface densities, {Sigma}, up to {approx_equal} 0.5 g cm{sup -2} with 2'' resolution and mitigate one of the main sources of uncertainty associated with Galactic MIREX mapping. We then characterize the structure of 42 massive starless and early-stage cores and their surrounding clumps, selected from 10 infrared dark clouds, measuring {Sigma}{sub cl}(r) from the core/clump centers. We first assess the properties of the core/clump at a scale where the total enclosed mass as projected on the sky is M{sub cl} = 60 M{sub Sun }. We find that these objects have a mean radius of R{sub cl} {approx_equal} 0.1 pc, mean {Sigma}{sub cl} = 0.3 g cm{sup -} and, if fitted by a power-law (PL) density profile {rho}{sub cl}{proportional_to}r{sup -k{sub {rho}}{sub ,}{sub c}{sub l}}, a mean value of k{sub {rho},cl} = 1.1. If we assume a core is embedded in each clump and subtract the surrounding clump envelope to derive the core properties, then we find a mean core density PL index of k{sub {rho},c} = 1.6. We repeat this analysis as a function of radius and derive the best-fitting PL plus uniform clump envelope model for each of the 42 core/clumps. The cores have typical masses of M{sub c} {approx} 100 M{sub Sun} and {Sigma}-bar{sub c} {approx} 0.1 g cm{sup -2}, and are embedded in clumps with comparable mass surface densities. We also consider Bonnor-Ebert density models, but these do not fit the observed {Sigma} profiles as well as PLs. We conclude that massive starless cores exist and are well described by singular polytropic spheres. Their relatively low values of {Sigma} and the fact that they are IR dark may imply that their fragmentation is inhibited by magnetic fields rather than radiative heating. Comparing to massive star-forming cores and clumps, there is tentative evidence for an evolution toward higher densities and steeper density profiles as star formation proceeds.

OSTI ID:
22039345
Journal Information:
Astrophysical Journal, Vol. 754, Issue 1; Other Information: Country of input: International Atomic Energy Agency (IAEA); ISSN 0004-637X
Country of Publication:
United States
Language:
English